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PREFACE

This book on mathematical statistics is the third of
the series of Carus Mathematical Monographs. "The)
purpose of the monographs, admirably expressed. by
Professor Bliss in the first book of the series, is “tormake
the essential features of various mathemati al theories
more accessible and attractive to as mafif )persons as
possible who have an interest in mathematics but who
may not be specialists in the particulaytheory presented.”

The problem of makingwstatibfitallibheoryravailable
has been changed considerably during the past two or
three years by the appearaqc}e’ of a large number of text-
books on statistical methods: In the course of preparation
of the manuscript of thé'present volume, the writer felt
at one time that perhiaps the recent books had covered
the ground in s ck‘a. way as to accomplish the main pur-
poses of the moulbgraph which was in process of prepara-
tion. But further consideration gave support to the view
that althdugh the recent books on statistical method wil
serve uséfll purposes in the teaching and standardization
of gtatistical practice, they have not, in general, gone far
toward exposing the nature of the underlying theory,

{.and some of them may even give misleading impressions

\
) 2

as to the place and importance of probability theory in
statistical analysis,

It thus appears that an exposition of certain essential
features of the theory involved in statistical analysis
would conform to the purposes of the Carus Mathemati-
cal Monographs, particularly if the exposition could be

v
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made interesting to the general mathematical reader.
It is not the intention in the above remarks to imply a
criticism of the books in question. These books serve
certain useful purposes. In them the emphasis has becn
very properly placed on the use of devices which facilia

tate the description and analysis of datg, S

The present monograph will accomplish its gnain
purpose if it makes a slight contribution toward, Shifting
the emphasis and point of view in the study of Statistics
in the direction of the consideration of the anderlying
theory involved in certajn highly Importaht methods of
statistical analysis, and if it mtrodqc\és some of the re-

portant elementagfmethods of description and analysis
of data by burely graphic methods and by the use of
various kinds 'of averages and measures of dispersion are
for the mgsfpart omitteq owing to the fact that these
method$ dre so available in Tecent elementary books that

ever, the exposition is designed, in general, for readers of
4 certain degree of mathematica] maturity,

&
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poses an acquaintance with elementary differential and
integral calculus, and with the clementary principles of
probability as presented in various books on college alge-
bra for freshmen. ~

A brief list of references is given at the end of Chapter \,
VII. This is not a bibliography but simply includes bogksy”
and papers to which attention has been directed iy the
course of the text by the use of superscripts. N\

The author desires to express his special indebtedness
to Professor Burton H. Camp who read.éﬁ‘ticaﬂy the
entire manuscript and made many valua:blé suggestions
that resulted in improvements, The/alithor is also in-
debted to Professor A. R, Gr@tham}ﬁmmuggngﬁms on
Chapter I and to Professor K. W)Chittenden for certain
suggcestions on Chapters IT dpd ' IIT. Lastly, the author
is deeply indebted to Prefessor Bliss and to Professor
Curtiss of the Publication Committee for important
criticisms and suggestions, many of which were made with
special reference, €0) the purposes of the Carus Mathe-
matical Monqg?a)hs.

O Hexry L. Rierz
THE UniERsiTY oF [owa
x"\Qet:l’.n:lber, 1926
&
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CHAPTER I

THE NATURE OF THE PROBLEMS AND UNDERs-\
LYING CONCEPTS OF MATHEMATICAL |
STATISTICS O

1. The scope of mathematical statistics. Tfle Bounds
of mathematical statistics are not 5harply~ﬁ@fmed Itis
not uncommon to include under mathematical statistics
such topics as interpolation theory, apbromma,te integra-
tion, periodogram analysis, “mdeﬁmmuhﬂmry oggtwarial
theory, and various other topids {fom the calculus of ob-
servations. In fact, it secmg¢hat mathematical statistics
in its most extended meax;nng may be regarded as includ-
ing all the mathematics\@pplied to the analysis of quaati-
tative data obtainéd\ from observation. On the other
hand, a number ¢f ﬁathematicians and statisticians have
implied by th\eﬁ writings a limitation of mathematical
statistics td he consideration of such questions of fre-
quency Jprobability, averages, mathematical expectation,
and dzs}:acrsmn as are likely to arise in the characterization
a.n\d\analyms of masses of quantitative data. Borel has
expressed this somewhat restricted point of view in his

< “statement! that the general problem of mathematical sta-

tistics is to determine a system of drawings carried out
with urns of fixed composition, in such a way that the
results of a series of drawings lead, with a very high degree
of probability, to a table of values identical with the table
of ohserved values.

! For footnote references, see pp. 17377,

T



2 NATURE OF PROBLEMS AND CON CEPTS

On account of the different views concerning the
boundaries of the field of mathematical statistics there
arose early in the preparation of this monograph G-
tions of some difficulty in the selection of topics to be ini-
chided. Although no attempt will be made here 10 an swe g;\ R
the question as to the appropriate boundaries of the figh™
for all purposes, nevertheless it will be convenicnt, l,}f.'}m-"
because of limitations of space, to adopt a someghat re-
stricted view with respect to the topics to be inglg’dcd. To
be more specific, the exposition of mathematice] statistics
here given will be limited to certain metheds and theories
which, in their inception, center atdund the names
of Bernoulli, De Toivre sk@Rlack,Lexis, Tchebychefl,
Gram, P@;i‘?sqo'rjl?lﬁagewor h, and Charlier, and which have
been much developed by othereontributors. These meth-
0ds and theories are much_8oncerned with such concepts
as frequency, probabili ,“ax;erages, mathematical expec-
tation, dispersion, and vorrelation.

\ated by W, Hooper, London, 1770.

Notwithsta.ndjng the
Comparatively recent introduction

of the word, certain
cal statistics to which
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HISTORICAL REMARKS 3

forward by Stirling (1730), De Moivre (1733), Euler
{1738), and Maclaurin (1742), and culminated in the
formulation of the probability theory of Laplace. The
Théorie Analytigue des Probabilités of Laplace published |
in 1812 is the most significant publication underlying
mathematical statistics. For a period of approximately
fifty years following the publication of this monuriéntal
work there was relatively little of importance cont;'r;ibuted
to the subject. While we should not overlook)Porsson’s
extension of the Bernoulli theory to cases Wh\'e the prob-
ability is not constant, Gauss’s developthént of methods
for the adjustment of ohservations, Brévals s extension of
the normal law to functions pﬁmmlghgpy siariables,
Quetelet’s activities as a pop.ularlzer of social statistics,
nevertheless there was on th&whole in this period of fifty
vears little progress. '.': "

The lack of progregg in this period may be attributed
to at least three factors: (1) Laplace left many of his re-
sults in the fo bf’apprommatlons that would not readi-
ty form the b \S for further development; (2} the follow-
ers of Ga.uss retarded progress in the generalization of fre-
quenc t}leory by overpromoting the idea that deviations
froprthe normal law of frequency are due to lack of data;
.(ﬁi\\Quetelet overpopularized the idea of the stability of

Neertain striking forms of social statistics, for example, the
' stability of the number of suicides per ycar, with the

natural result that his activities cast upon statistics a
suspicion of quackery which exists even to some extent
at present.

An important step in advance was taken in 1877 in
the publication of the contributions of Lexis to the classi-
fication of statistical distributions with respect to normal,
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supernormal, and subnormal dispersion. This theory will
receive attention in the present monograph.

The development of generalized frequency curves and
the contributions to a theory of correlation from 1885 to
1900 started the period of activity in mathematical statis-
tics in which we find ourselves at present. The presen\t’ -
monograph deals largely with the progress in this period,
and with the earlier underlying theory which facilitated
relatively recent progress. 4%

3. T’ ﬁlgfgﬁbﬁﬁgfﬁ?dﬁ}omems, Fat ’[Sitfposes of
description it seems convenient to recognize'two general
classes of problems with which we are concérned in mathe-
matical statistics. In the problems\ef the first class our
concern is largely with the chatagterization of a set of
numerical measurements or gﬁtfniates of some attribute
or attributes of 2 given set\of individuals. For example,
we may establish the facts about the heights of 1,000
men by finding averages, measures of dispersion, and
various statistiv:g'}ihdexes. Our problem may be limited

Z

to a charactf:nt ion of the heights of these 1,000
men. ™

In theproblems of the second class we regard the data
obta.ipe?gl}rom observation and measurement as a random
sample’drawn from a well-defined class of items which
may include either a limited or an unlimited supply. Such
2 well-defined class of items may be called the “popula-

/' tion” or universe of discourse. We are in this case con-
cerrfed with using the properties of a random sample of
variates for the purpese of drawing inferences about the

larger pop-ulation from which the sample was drawn. For
example, in this class of problems involving the heights
of the 1,000 men we would be concerned with the ques-
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TWO GENERAL TYPES OF PROBLEMS 5

tion: What approximate or probable inferences may be
drawn about the statures of a whole race of men from an
analysis of the heights of a sample of 1,000 men drawn at
random from the men of the race? In dealing with such\
questions, we should in the first place consider the dlfﬁ—
culties involved in drawing a sample that is truly ra\ndam,
and in the next place the problem of dcvelopmg* certain
parts of the theery of probability mvolvedm Statistical
inference. wwow . dbrawlibi ar:y\m B.in
The two classes of problems to which.we have directed

attention are not, however, entirely distinct with regard
to their treatment. For example, (@e conceptions of prob-
able and standard error may beuised both in describing
the facts about a sample and in indicating the probable
degree of precision of inférences which go beyond the ob-
served sample by dea]iflg with certain properties of the
population from Whlch we conceive the sample to be
drawn, Moreovclx 2 satisfactory description of a sample
is not likelyt6.be so purely descriptive as wholly to pre-
vent the miind from dwelling on the inner meaning of the
“facts in @élation to the population from which the sample
is dnan

"&%s a preliminary to dealing in later chapters with cer-
?S.m of the problems falling under these two general classes
* we shall attempt in the present chapter to discuss briefly
the nature of certain underlying concepts. We shall find
it convenient to consider these concepts in pairs as fol-
Yows: relative frequency and probability; observed and
theoretical frequency distributions; arithmetic mean and
mathematical expectation; mode and most probable val-
ue; moments and mathematical expectations of a power
of a variable.
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4. Relative frequency and probability. The frequency
f of the occurrence of 2 character or event among s possi-
ble occurrences is one of the simplest items of statistical
information. For example, any one of the following items
illustrates such statistical information: Five deaths in a
year among 1,000 persons aged 30, nearest birthday; 610:%
boys among the last 1,200 children born in a city; 460
married men out of a total of 1,000 men of age 23; tavelve
cases of 7 heads in throwing 7 coins 1,536 times,

The deterndisibb b ehe il erical valuesGhthe rela
tive frequencies 7/5 corresponding to such jtenis is one of
the stmplest problems of statistics, This'simple problem
suggests a fundamental problem comesm; g the probable
or expected values of such relatiye }réquendes if s were
a very large number, When s is. AMarge number, the rela-
tive frequency f/s is very comiittonly accepted in applied
statistics as an approximate ‘measure of the probability

of occurrence of the ev\eﬁt or character on a given occa-

sion, )

To take an i}ﬁ}&rétion from an important statistical
problem, let us@gsume that among ! persons equally likely
to live 2 yearGe find d observed deaths during the year.
That ise:\ﬁe“ assume that d represents the frequency of
deaths\ﬁpér year among the / persons each exposed for anc
year fo'the hazards of death, If; is.fairly large, the rela-

Awve frequency d/l is oftep regarded as an approximation

N

N
\



RELATIVE FREQUENCY AND PROBABILITY 7

tration, suppose there are 600 deaths among 100,000 per-
sons exposed for a year at age 30. We accept .006 as an
approximation to the probability in question at age 30.
In the method of finding such an approximation we decide. \
on a population which constitutes an appropriate clads
for investigation and in which individuals satisfy certain
conditions as to likeness. Then we depend on obgcr:‘?atibn
to obtain the items which lead to the relative frequency
which we may regard as M%%mgﬁggy{géémp proba-
bility. O
For an ideal population, let us c%lceive an urn con-
taining white and black balls alike éRe€pt as to color and
thoroughly mixed. Suppose fugtlje\r for the present that
we do not know the ratio of thenumber of white balls to
the total number in this z;fii*whjch we may conceive to
contain cither any finitesnimber or an indefinitely large
number of balls. This'ra'tio is often called the probability
of drawing a whitg\ball. When the number in the urn is
finite, we make'drawings at random consisting of s balls
taken one ag\time with replacements to keep the ratio
of the numbers of white and black balls constant. If we
may aSume the number in the urn to be infinite, the
drawings may under certain conditions be made without
‘&fﬂz{cements. Suppose we obtain f white balls as a result
3 \Of thus drawing s balls, then we say that f/s is the relative
~0  frequency with which we drew white balls. When s is
N/ large, this relative frequency would ordinarily give us an
approximate value of the probability of drawing a white
ball in one trial, that is, an approximate value of the
ratio of white balls to the total number of balls in the
urn.
Thus far we have not defined probability, but have
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presented illustrations of approximations to probabilities.
While these illustrations seem to suggest a definition, it
is nevertheless difficult to frame a definition that is satis-
factory and includes all forms of probability. The need A
for the concepts of relative frequency and probability in
statistics arises when we are associating two events suehv/y
that the first may be regarded as a frigl and the second
may be regarded as a success or a Jailure depending on
the result of the trial. The relative frequency ofsuccess
is then tHe'Tatio of the nUmber of successe¥ o the total
number of trials, O

If the relative frequency of succes Cabproaches a limit
when the trial is repeated indefinitely ander the same sef of
circumstances, this limit is called the probability of success
in one trigl, Yy

There are some objections'to this definition of proba-
bility as well as to any other that we could propose. One
objection is concerngd, With questioning the validity of
the assumption that a limit of the relative frequency
exists, and another relates to the meaning of the expres-
sion, “the samle set of circumstances.” That the limit
exists is a‘p\ empirical assumption whose validity cannot
be pmyéi, but experience with data in many fields has
gixemrmuch support to the reasonableness and usefulness
'.c}i ¢ assumption. The objection based on the difficulty
(O of controlling conditions so ag to repeat the trial under the

) same set of circumstances is an objection that could be

brought against experimental science in general with re-

spect to the difficulties of repeating experiments under

the same circumstances. The experiments are repeated as

nearly as circumstance permits.

It scems fairly obvious that the development of sta-
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tistical concepts is approached more naturally from this
it definition than from the familiar definitions suggest-

ed hy games of chance. However, we shall at certain,

points in our treatment (for example, see § 11} give
attention to the fact that various definitions of proba-
bility exist in which the assumptions differ from_ those
involved in the above definition, The meaningof proba-
bility in statistics is fairly well expresséd)for some
purposes by any one ofthehexpresslions, otheoretical
relative frequency, presumplive relative\frequency, or ex-
pected value of a relative frequene$r> Indeed, we some-
times express the fact that thé relative frequency f/s
is assumed to have the probability ¢ as a limit when
s>co in abbreviated formby writing E(f/s) =#, where
E(f/s) is read, “expected walue of f/s.” It is fairly clear
that in our definition® of probability we simply ideal-
ize actual experignce by assuming the existence of a limit
of the relativedrequency. This idealization, for purposes
of definitign, 18 in some respects analogous to the ideal-
ization, ¢f,"the chalk mark info the straight line of
geometry.
¢y certain cases, notably in games of chance or urn
Schemata, the probability may be obtained without col-
WWecting statistical data on frequencies. Such cases arise
when we have urn schemata of which we know the ratio
of the number of white balls to the total number. For
example, suppose an urn contains 7 white and 3 black
balls and that we are to inquire into the probability that
a ball to be drawn will be white. We could experiment by
drawing one ball at a time with replacements until we
had made a very large numher of drawings and then esti-
mate the probability from the ratio of the number of

N\
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white balls to the total number of balls drawn. It would
however in this case ordinarily be much more convenient
and satisfying to examine the balls to note that they are
alike except as to color and then make certain assump-
tions that would give us the probability without actually\ A\
making the trials, )

Thus, when all the possible ways of drawing the\balls
one at a time may be analyzed into 10 equally likelyways,
and when 7 of éggggﬂgrg;ayggyg white balls,we“assume
that 7/10 is the probabilify that the ball'toJe drawn in
one trial will be white. This simple caSeillustrates the
following process of arriving at a prohdhility:

If all of an aggregate of Ways of ‘dbt&z'ning sticcesses and
failures can be analysed into s’ Dossible mutually exclusive
ways eack of whick is equallyJikely; and if f* of these ways
give successes, the probabil, 5 of @ success in a single trial
may be taken to be f/sh

Thus in throwigrgm single die, what is the probability
of obtaining an‘\{{sg‘? We assume that there are 6 equally
hikely ways im\which the die may fall. One of these ways
gives an\até;” Hence, we say 1/6 is the probability of
throwing\ah ace. A probability whose value is thus ob-
tajgzldd‘rom an analysis of ways of occurrence into sets of
equa

qtially likely cases and a segregation of the cases in which

Bisuccess would occur is sometimes called an a priori
~\J probability,

while a probahility whose approximate value
is obtained from actua] statistical data on repeated trials
is called an ¢ posteriori or statistical probébih'!y.

In. making an analysis to study probabilities, difficult
questions arise both as to the meaning and fulfilment of
the condition that the ways are to be “equally likely.”
These questions have been the subject of lively debates
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by mathematicians and philosophers since the time of
Laplace. It has been fairly obvious that the expression
“equally likely ways” implies as a necessary condition
that we have no information leading us to expect th& >
event to occur in one of two ways rather than in the other,
but serious doubt very naturally arises as to the, suffi-
ciency of this condition. In fact, it is fairly clear that lack
of information is not sufficient. For example Sack of in-
formation as to whether %WM&;E%F%‘&Y metrical
and homogeneous does not assist onejin» passing on the
validity of the assumption that it is pﬁua]ly likely to turn
up head or tail. Tt is when we have all available relevant
information on such matters &85 8ymmetry and homoge-
neity that we have a basis for'the inference that the two
ways are equally likelys 0¥ not equally likely. Similarly,
lack of information abgut two large groups of men of age
30 would not assist ws in making the inference that the
mortality rates 0 probabilities of death are approximate-
ly equal for the' two groups. On the other hand, relevant
informatign’in regard to the results of recent medical
exammahons, occupations, habits, and family histories
WOL@B‘ give support to certain inferences or assumptions
Mcermng the equality or inequality of the mortality
\Yates for the two groups.
mi “‘ 5. Observed and theoretical frequency distributions.
V In many statistical investigations, if is convenient to par-
tition the whole group of observations into subgroups or
classes so as to show the number or frequency of observa-
tions in each class. Such an exhibit of observations is
called an “observed frequency distribution.” As illustra-
tions we present the following, where the rows marked F

are the observed frequency distributions:
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Example r. A =lengths of ears of corn in inches.

4..3 45 60 75 9.0 105 12.0

F....1 3 20 63 170 &7 3

Example 2. A =prices of commodities for 1919 rela- s
tive to price of 1913 as a base. .
A..62 87 112 137 162 187 212 237 262 287 312 337 362 387 417 437 462 \“.\
F..12 51639 66 61 36 38 24 9 3 3 3 0 o}

Example 3. 4 =heights of men in inches. O8N
4.... 6t 62w oBLinf8 69 0 Tt 44073 14
F.... 2§ ?%bgé”lggmgqu ‘i‘o(szz 26 100 87763 o 4

In Example 1 the whole group of ears'of corn is ar-
ranged in classes with respect to length 6fears. The class
interval in this caseis taken to be on®.and one-half inches,
In Example 2 the class interval is anumber, twenty-five:
in Example 3, it is one inch, SNV

If the variable » takes values %, @, . . . . | %, with

the corresponding probabilities p,, Do ve .ty pa, we call
the system of values L%, . . . ., %, and the associated

probabilities or nt@,b‘ers proportional to them, the theo-
retical frequengy distribution of the variable #. Thus, we
may write ferthe theoretical frequency distribution of
the numbery6f heads in throwing three coins:
H@ ................. ] 1 2 3
\Probabilities..,, . ... /8 3/3 38 18
AN "Theoretical frequencies. 1 3 3 1
a variable x there exists

0 of the number of valyes
mber on the interval ¢'p’

~ “When fora given set of values of
\/ afunction F(x) such that the rat;
of x on the interval ab to the nu

is the ratio of the integralg

be(x)dx :f:b’F(x)dx .
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FREQUENCY FUNCTION 13

for all choices of the intervals ab and o’¥, then F(z) is
called the frequency function, or the probadility density, or
the law of distribution of the values of x, The curve
y=F(x) is called a theoretical frequency curve, or more ,
briefly the frequency curve.

To devise methods for the description and charactéri
zation of the various types of irequency distri.bu:fioris
which occur in practical problems of statisticsdsiclearly

www_dbl'aulibral'&&'r‘g_in
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}E}, 1 =howlug freguency polygou sad free-hand fre-
gnomey corva of the distrittion of helghts of men i
Exninpte 1

of fundandental importance. Such a description or charac-
terigation may be effected with various degrees of refine-

hent ranging all the way from one extreme with a simple

: .\3 [frequency polygon or freehand curve (Fig. 1) representing

“ frequencies by ordinates, to a description at the other

extreme by means of a theoretical frequency curve
grounded in the theory of probability.

Tt is fairly obvious that the latter type of description
is likely to be much more satisfactory than the former
because a deeper meaning is surely given to an observed
distribution if we can effectively describe it by means of
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a theoretical frequency curve than if we can give only a
freehand or an empirical curve as the approximate repre-
sentation. However, we should not overlook the fact that
the description by means of a theoretical curve may be
too ponderous and laborious for the particuiar purposea
of an analysis. Indeed, the use of the theoretical curveds™
likely to be justified in a large way only when it facilitates
the study of the properties of the class of distributions of
which the given ongiis.a.rapdem sample b){ﬁjﬂéﬁling us
to make use of the properties of a mathematieal function
F(z) in establishing certain theoreticalx.@ﬁns for the de-
scription of a class of actual distribufions. As important
supplements to the purely graphie wiethod, we may de-
scribe the frequency distributign By the use of averages,
measures of dispersion, skewhess, and peakedness. Such
descriptions facilitate thedomparison of one distribution
with another with respect'to certain features,

6. The arithmetic mean and mathematical expecta-
tion. The arithinetic mean (4 M) of 7 numbers is simply
the sum of the numbers divided by n. That is, the arith-
metic meaf’of the numbers

AN

N\ Xy Xz, 00 ., y Xn

\..
‘i§"g}ven by the formula

£\
s J

\ W
3

) Ag=Etat g
ﬂ -
The AM is thus what is usually meant by the terms
“mean,” “average,”

. or “mean value” when used without
further qualification, If the valuesy, @, , | .

: i .y Xa OCCUr
with corresponding frequencies ;, Ty .

«+ 5 fu, TESPEC-

N
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tively, where fi+fat ... . + fa=5 then it follows
from (1) that the arithmetic mean is given by

»n+ x2+""+nxn
(2 ay=foth . futa,
L)\
NS ©
{3) =%x1+’%x¢+ e 'i"f?nxn ] '”’}‘ ™
where www,dbraulﬂ?u%y.org.in

BlsHifst - /s

The arithmetic mean giver.l‘b'}}RZ) is sometimes called
a “weighted arithmetic mean™where fi, fz, . . . ., fa 25¢
the weights of the valuess, %, . . . . , &, TeSpeCtively,
and (3) may similarly }i’:‘pévrcgarded as a weighted arith-
metic mean, where- .

A~

\’\aW} fifs, fafss e v v 2 Jals

are the Weights of %1, &, . . . ., Tn, respectively.
For'our present purpose it is important to note that

Ko) Coefficients of 21, %2, .« .., ¥a in (3} are the rela-

{tive frequencies of occurrence of these values. By defini-

.~\'~”f" tion of statistical probabilities, the limiting value of fifs
./

\‘:

as s increases indefinitely is p., where p is the assumed
probability of the occurrence of a value x, ainong a set
of mutually exclusive values 3, &2, . . -+, T Hence, as
the number of cases considered becomes infinite, the arith-
metic mean would approach a value given by

@ AM = piit pazet - - -+ -+ Pn¥n
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where the probabilities p;, s, . . . . , po may be regard-
ed as the weights of the corresponding valugs

x], xﬂ,. - vy x”.

The mathematical expectation of the experimenter or
the expected value of the variable is a concept that has™y,
been much used by various continental European writess
on mathematical statistics. Suppose we considety the
probabigq;;ﬂg‘(ﬁmﬁﬁbrwy.m.g,mof # mutually exelusive
events E;, Ey, ..., E,, so that Prtpet et pa=1.
Suppose that the occurrence of one of thésey'say E,, on
a given occasion yields a value %, of asyariable x. Then
the mathematical expectation or expécted value E(x) of
the variable & which takes on ~Valles X1, %, .

. X
with the probabilities p,, Pindi . ., pu, respectively,
may be defined as N

(s) E@) =patpotst -+« 4oz, |

We thus note by aeomparison of (4) and (3) the identity
of the limit of theunean value and the mathematical ex-
pectation, ¢

Furthermore, in dealing with a theoretical distribution
in which.p{s the probability that a vanable z assumes a
valQ;‘x} among the possible mutually exclusive values
12;{‘&, ey Xy, and P1+Ps+ bR +P”=1, we have

o~ ‘(6) AM=pieit-porgt . . . . + Putn .

:I‘hat is, the mathematical expectation of a variable x and
its mean value from the appropriate theoretical distribu-
tion are identical. While there are probably diffcrences
?f Opinion as to the relative merits of the langﬁage involv-
Ing mathematical expectation or expected value in com-
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parison with the language which uses the mean value of
a theoretical distribution, or mean value as the number
of cases becomes infinite, the language of expectation
seems the more elegant in many theoretical discussions.
For the discussions in the present monograph we shall {
employ both of these types of langnage.

7. The mode and the most probable value. The. (nozie
or modal value of a variable is that value which occurs
most frequently (that is, is most fashionable)® if such a

R www.dbraulibrapyorg.in
value exists, S

Rough approximations to the mode arewsed consider-
ably in general discourse. To illustrate; the meaning of
the term “average” as frequently.uUséd in the newspapers
in speaking of the average mangsedms to be a sort of crude
apprommatlon to the modeThat is, the term “average”
in this connection usual}y implies a type which occurs
oftener than any other! ;mgle type.

The mode presetits one of the most striking character-
istics of 2 frequency distribution. For example, consider
the frequencydistribution of ears of corn with respect
t& rows of Kernels on ears as given in following table:

A%l 12 1 16 18 0 2
(R0 16 109 241 235 116 41 14,

'e\r; A =number of rows of kernels and F ={requency.

\ It may be noted that the frequency increases up to the
» class with 16 rows and then decreases. The mode in rela-

tion to a frequency distribution is a value to which there
corresponds a greater frequency than to values just pre-
ceding or immediately following it in the arrangement.
That is, the mode is the value of the variable for which
the frequency is 2 maximum. A distribution may have
more than one maximum, but the most common types of
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frequency distributions of both theorctical and practical
interest in statistics will be found to have only one mode,

The expression “most probable value” of the number
of successes in s trials is used in the general theory of
probability for the number to which corresponds a largera

O\
probability of occurrence than to any other sin gle numpbgr™
which can be named, For example, in throwing 100 coirrs,
the most probable number of heads is 50, becaude 30 is
more likely than, any affher single number.

This does not mean, however, that the probability of
throwing exactly 50 heads s large. In f:}% it is small, but
nevertheless greater than the probabilify of throwing 49
or any other single number of heads™In other words, the
most probable value is the modal value of the appropriate
theoretical distribution. o

8. Moments and the \tpathematical expectations of
powers of a variable, With ohserved frequencies f,, f,,
S corresponding to xy, x, . . . . ¥y, respectively,
and with f,4-f, 44 . fu=35, the kth order moment, per
unil Jrequency)Ns defined as

<O

£ f=wn
AY , 1
M \\ J-‘k:}z.ftx: ]
'§“. fe=1

\'w’mch is the arithmetic mean of
~\\Jvariates, For the sake of brevity,
\/ th(:’ word “moment” as ap abbreviation for “mument per

unit frequency,” when thig usage will lead to no misunder-
standing of the meaning,
Consider a theoretica} distribution of a variabje x tak-

mgbvalflfes. xlt=1,2 .. s #). Let the corresponding
probabilities of occurrence pult=1,2 .. n} be repre-

the kth powers of the
we shall ordinarily use
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sented as v-ordinates. Then the moment of order % of the
ordinates about the y-axis is defined as

(8) W= purt

The mathematical expectation of the kth power of 3. 45 .
likewise defined as the second member of this equahtySo
that the kth moment of the thegretical dlﬁtﬁlba&;tibn and
the mathematical expectation of the kth pcm{e of the
variable x are identical.

When we have a theoretical distribut{sﬁ ranging from
#=a to x=5, and given by a frequemqy function (p. 13)
y=F(x), we write in place of (8) \4

Ki =f‘ébp(x)dx '
EA
where F(x)dx g‘lVCSmDQ within infinitesimals of higher or-
der, the probabi ty‘tha.t a value of # taken at random falls
in any assignedl,interval x to x+dx.

Whenythé axis of moments is parallel to the y-axis
and passes-through the arithmetic mean or centroid & of
the vahable x, the primes will be dropped irom the u's
which ‘denote the moments. Thus, we write

ad
¢

o N

\‘.(9) == th(xt"x)k'" Zh(x‘ )t

™

where the arithmetic mean of the values of x is = p;.
The square root of the second moment g about the
arithmetic mean is called the standard deviation and is
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very commonly denoted by ¢. That is, the standard de-
viation is the root-mean-square of the deviations of a sct
of numbers from their arithmetic mean. In the language
of mechanics, ¢ {5 the radius of gyration of a set of s equal
particles, with respect to a given centroidal axis, \
It is often important to be able to compute the(gip-
ments about the axis through the centroid frofythose
about an arbitrary parallel axis. For this purpose the fol-
lowi‘ggm! r%lﬂ;tll:onlsi jare easily. established by expanding the
binommal In 69 and }frhen making someglight simplifica-

tions: \

R\

w=p=1,  m=0, \j=u—u,

v

¥

4

Ha= b — 3u1 g+ 2ud,,

F4 = = A Ot g — Bl |

‘..‘" L] L] L] L
A
o‘v":
n
RN E (i)(—ui W
O =
A/
whm?n:
' M
N\ (ﬂ !
2 8 . = —
\ LT |

is: the number of combinations of # things taken ¢ at a
time.

Thes-e Telations are very useful in certain problems
of practical statistics because the moments e (k=1, 2,
e .) are ordinarily computed first about an axis con-
veniently chosen, and then the moments u; about the
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parallel centroidal axis may be found by means of the
above relations. In particular, uz=u;—p* expresses the
very important relation that the second moment u» about
the arithmetic mean is equal to the second moment g
about an arbitrary origin diminished by the square pi?

of the arithmetic mean measured from the arbitrary( )\’

origin. This is a familiar proposition of elementary ffig~ =
chanics when the mean is replaced by the centroi(‘igf; )

When we-pass from (9) to correspopding ex %%f%_ti%;s,
the relation u,=uz— pi?, written in the formgn= pi‘g?}- Ha,
tells us that the expected value, E{x%}, of x® is equal to
the square, [E(x)]?, of the expected valitg“of x increased
by the expected value, E{[x —E(x)]f}',‘?f\{he square of the
deviations of % from its expected ¥alue.

L3
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CHAPTER TII

RELATIVE FREQUENCIES IN SIMPLE SAMPLING ,\f\

"N

Q. The binomial description of frequency. In Chap-
ter I attention was directed to the very simple pracess of
ﬁndin&\{@gbgg&g&eaggq%mﬁy of occurrence of a1 event
or character. among s cases in question. Letiug now con-
ceive of repeating the process of finding, ‘relative fre-
quencies on many random samples each’consisting of s
items drawn from the same populatibn, To characterize
the degree of stability or the degrée’of dispersion of such
a series of relative frequencies it fundamental statistical
problem. ONF
~ To fllustrate, SUPpOse We Tepeat the throwing of a set
of 1,000 coins many {imes. An observed frequency dis-
tribution could Llﬁé)n’be exhibited with respect to the
number of heads\e tained in each set of 1,000, or with
respect to therelative frequency of heads in sets of 1,000.
Sucha proc::e?iure would be a laborigus experimental treat-
ment of the problem of the distribution of relative fre-

queL\\sieé from repeated trials, What we seek is a mathe-
matical method of obtaing

) Tespect to the relative frequency of heads in the sets.
To consider a more general problem, suppose we draw

one trial. The problem we set is

tical frequency distribution with
22

to determine the theore
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respect to the number of white balls per set of s, or with
respect to the relative frequency of white balls in the sets.

To consider this problem, let ¢ be the probability of
failure to draw a white ball in one trial so that p4g=-1.

Then the probabilities of exactly m=0, 1, 2, , S
successes in s trials are given by the successive terms of p
the binomial expansion AN

\

(q_!_P)s_q +5qu—1+( )p\ﬂfrw dbraulibyar y‘mg 111

(1} \
() e O
N
where \

5 s N/
() =) 5o

Derivations of this formula for the probability of m
successes in s trials from cértain definitions of probability
are given in books on €ollege algebra for freshmen. For a
derivation startingdrom the definition of probability as a
limit, the reader 8 referred to Coolidge.? A frequency
distribution lmth class frequencies proportional to the
terms of (13 ¥s sometimes called a Bernoulli distribution.
Such actifeoretical distribution shows not only the most
probable distribution of the drawings from an urn, as
deseribed above, but it serves also as a norm for the dis-
-~ 't;?ibution of relative frequencies obtained from some of
‘the simplest sampling operations in applied statistics. For
example, the geneticist may regard the Bernouili dis-
tribution (1) as the theoretical distribution of the rela-
tive frequencies m/s of green peas which he would obtain

* See references on pp. 173-77.
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among random samples each consisting of a yicld of s
peas. The biologist may regard (1) as the theoretical dis-
tribution of the relative frequencies of male births in
random samples of s births, The actuary may regard (1)~
as the theoretical distribution of yearly death-rates in
samples of s men of equal ages, say of age 30, dranf)ﬁin
a carefully described class of men. In this,case we
specify that tHe :'sa:mplcs
shall be takeh #fom a care-
fully désésibed class of
men because the assump-
tio;:Q’ anvolved in the urn
schemata underlying a
\ Bernoulli distribution do
¥ not permit a careless se-

-____'__—‘—————ﬁ:%' . .
S SNT X lection of data, Thus, it

¥ would not be in accord

—~

ww.dbraulibgary org.in

Probabilitiea
5Bl Ble Els Ble fe

Ei= Bl

We are concerned with Yepeating the process of drawing
; the same Population is intended to imply that the
3 \Same set of circumstances essential to drawing a random

* sample shall exist throughout the whole series of draw-
ings,



O

e

) We may say therefore that, neglecting a proper fraction,
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sample to sample, and that the drawings are mutually
independent in the sense that the results of drawings do
not depend in any significant manner on what has hap-
pened in previous drawings.

In Figure 2 the ordinates at =0, 1, 2, , 7 show

the values of terms of (1) for p=¢= 1/2 5= 7 To find(" D)

the “most probable” or modal number of successes
m’ in s trials, we seek the value of w1 =m’ which gWgs a
maximum term of (1). Te find tﬁfé“@’&hf@‘&f%r%@‘tﬁﬁ'i‘e
the ratios of the general term of (1) to the pren}dmg and
the succeeding terms. The first ratio mll\be equal to or

greater than unity when AN
R&
itin e § SR -
m g =1 01: ’;m:':ps-%-p .

In the same way, the se:cb';id" ratio will be equal to or
greater than unity when_ -

Kg@ %_2;1 or M= ps—q

We have tlﬁls, the integer m =m’ which gives the modal
value defermined by the inequalities,

N

=~ ps—q=m' Spstp.

ps is the most probable or modal number of successes.
When ps—gq and ps-p are integers, there occur two equal
terms in (1) each of which is larger than any other term
of the series. For example, note the equality of the first
and second terms of the expansion (5/6-+1/6)".
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10. Mathematical expectation and standard deviation
of the number of successes. Let % be the matheratical
expectation of the number of Successes, or what iz the
same thing, the arithmetic mean number of successes ip
§ trials under the law of tepeated trials as defined N

formula (1) on page 23. We shall now prove that 7 =55,
By definition (§ 6),

m=
il dbra l'a]“:{&‘bl'g.in M'\V

e #)_Eml(s—-m).fpmq ™
(2) m=10

o m\/
2—‘\ s! RZs)

= T 3
= m= D1 (s—m)} ‘b ;3:

v

S
Yt G ey e,
since (

N .

2, (n 1)t gme oy
P
\ ¥/

pring, \
\\
4

= 5!
m= m:o;’ﬂ—(é‘“m)! 7 ?H“(m—sp)e
a— ‘S 5!
? { ) *zﬂl_!—m P (m— 2msp+sfpﬂ) .
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We shall now prove that o?=spg. To do this, we
write m?=m-+m(m—1) and obtain for the ﬁrst term of
(4) the value

—\ stm §=1m
2 G P )
=1} O
(5) S (-2 \"
+s{s—1)p Zl(m )'ugsdbtvﬂl lbral}?:fﬁ’g “:
_5?-1-3(3 D .

From (2)} (3): (4)’ and (5), we ha.ve :‘\\.:

c*=spts(s—1)p>— 232172-1*323)2
© |
"'SP(I_?)—SP?)

The measure of dlsperslon o is often called the
standord deviation of the frequency of successes in the
population.

Next, we deﬁ{e if.'I}Cs~('.»:rz/.v) =9 as the relative dis-
crepancy, for it is,the difference between the probability of
success and the relatlve frequency of success. The mean
square of theyelative discrepancy is the second member
of equat;Qn\(4) divided by s%. It is clearly equal to the
mean Qﬁ}nare of of the discrepancy divided by s2, which
gwes

i
The theorctical value of the standard deviation of the
relative frequency of successes is then (pq/5)1/2,

1. Theorem of Bernoulli. The theorem of Bernoull

deals with the fundamental problem of the approach of
the relative frequency m/s of success in s trials to the

“ 2
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underlying constant probability p as s increases. The
theorem may be stated as follows: _

In a set of s trials in which the chance of @ success in
each irial is a constant b, the probability P of the relative
discrepancy (m/s) — p being numerically as large as airy aghy
signed positive number ¢ will approach gero as‘e limit a\x{ke
uwmber of trials s increases indefinitely, and the {)r(@ﬁg{?thfy ,
Q=1—"P, of this relative discrepancy being less {ffz,un € ap-
P’Wdlgmmyyrg_m “

This theorem is sometimes called theNlaw of large
numbers. The theorem has been very cothmonly regarded
as the basic theorem of mathcmtigalfsfatistics. But with
the definition of probability (p. 8 a¥the limit of the rela-
tive frequency, this theorem isdpimmediate consequence
of the definition. While it @dds to the definition some-
thing about the mannerof approach to the limit the
theorem is in some respects not so strong as the corre-
sponding assumptionNn the definition.

With a defibftion of probability other than the limit
definition, the\theorem may not foliow so readily. It has
been regardéd as fundamental because of its bearing on
the usg.0fthe relative frequency m/s (s large) as if it
were@\close approximation to the probability p. Assum-
i.ng%n“ that we have any definition of the

cess in one trial from which we reach

2\ Dthe law of repeated trials given in the binomial expansion

© (), we may prove the Bernoull; theorem by the use of
the Bienaymé-Tchebycheﬁ Criterion,

To derive this criterion, consider 3 statistical variable

% which takes mutually exclusive values a3, 25, . . .
with probabilities Py b,

Cy X
** > Pn; Tespectively, where
p1+h+ ter +Pn=1 -
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Let a be any given number from which we wish to
measure deviations of the x’s. A specially important case
is that in which ¢ is a mean or expected value of x, al-
though ¢ need not be thus restricted. For the expected

mean-square deviation from ¢, we may write N .
¢\
S )\
= pditpadit - - - - +padi, W
N
where d,- =x;—da, www dbrauli br‘al'y_:mvg_ in

Letd’,d”, . ..., be those deviations g }vhich are
at least as large numerically as an assighéd multiple
e=Aa(A>1) of the root-mean-square, déviation ¢ from
e, and let ', p"”, . ..., bethe cofrésponding probabili-

ties. Then we have W\
(8) o2 YA
Since &, 4", .. .., ate each numerically equal to or

greater than Ae, Wezfip,\/e from (&) that
N\

LSNP+ ).
\<&
If we #ew let P(Ao) be the probability that a value of
% tak}\szia't random from the “population” will differ from
¢ pumerically by as much as Ae, then P(Ae)=p"+p"
5 % ..., and a*ZNa?P{he). Hence

1
{9 | Py = 53

To illustrate numerically we may take a to be the arith-
metic mean of the «’s and say that the probability is not
more than 1/25 that a variate taken at random will
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deviate from the arithmetic mean as much as five times
the standard deviation,

A striking property of the Bicnaymé-Tchehycheff
criterion is its independence of the nature of the distribus
tion of the given valyes, O\

In a slightly different form, we may state thaisphe
probability is greater than 1--1/X2 that a variqt;%.‘t\éaken
at random will deviate less than Ae from thentathe-
magjgﬁ&,‘mﬁc.ﬂaﬁi@my.éi‘himtheorem is ordingrily known
as the inequality of Tchebycheff # but the” main ideas
underlying the inequality were also developed by Bie-
Raymé ¢ W

We shall now turg our attention’more directly to the
theorem of Bernoulli, We seek, the probability that the
relative discrepancy (m/ S)Q-v—ﬁfé will be numerically as large
as an assigned positive number ¢,

' We may take E=?}:(pé/s)1/2, a multiple of the theoreti-

cal standard deviation'(pg/s)1/2 of the relative frequencies
m/s. (See §10 \i 4

Let P bexthe probability that
NOT Im_ pg\ 2
For | =)

~
Bienaymé-'l‘chebycheﬁ criterion (9), we

\&
th,Q('ﬁ'om the
dave Py

\“\ Since

} 1 1 12
N T=-{£1 ?q
X (s) e have P< 7L
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tends toward zero as the number of cases s is indefinitely
increased.

For example, if we are concerned with the probability
P that| (m/s)—=p | 2.001, we see that P<1,000,000pq/s.
if the number of trials s is not very large, this inequality
would ordinarily put no important restriction on P. Buty,
as s increases indefinitely, 1,000,000p¢ remains constant,”
and 1,000,000p¢/s approaches zero. Again, the prababil-
ity Q=1—P that | (m/s) —p| s %"ééﬁ?ﬁ&'rihe
condition ,~~}\\

g
(10) Q>I—S—62. A
From (10) we see that with any'}c;ﬁsta.nt g/, the
probability ( becomes arbitrarily near 1 or certainty as
s increases indefinitely. Hengéithe theorem is established
fer any definition of probability from which we derive

(1) as the law of repeated trials.

It seems that the‘statement of the theorem concern-
ing the probable dpproach of relative frequencies to the
underlying pr{gb(\%ﬂity may appear simpler and more ele-
gant by the,use of the concept of asymptotic certainty
introducedhby E. L. Dodd in a recent paper.s According
to thjs\"ebﬁcept, we may say it Is asymptotically certain
that\pr/s will approach p as a limit as s increases in-
définitely.

()" 12. The De Moivre-Laplace Theorem.® The De
\J Moivre-Laplace theorem deals with the probability that
the number of successes m in a set of s trials will fall
within a certain conveniently assigned discrepancy 4 from

the mathematical expectation sp. By the inequality of
Tchebycheff (p. 30) a lower limit to the value of this
probability has been given. We shall now proceed to con-

Q"
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sider the problem of finding at least the approximate
value of the probability. This problem would, in r.h'e
simplest cases, involve merely the evaluation and addi-
tion of certain terms of the expansion (1). But this Pro-
cedure would, in general, be impracticable when s is large\
and & even fairly large. To visualize the problem Gve
represent the terms of (1) by ordinates y, at unit, inter-
vals where & marks deviations of m from thg’ mathe-
madical; eRpeatation pisworesses Psasan origi?il.'\ Then we
have }

_ 5! AN .

The probability that the nufaber of successes will lie
within the interval ps—d adgh #s+d, inclusive of end

values, is then the sum ofsthe ordinates
RN +d

(12) y~d+y~<¢~n+<f' ""+)'n+y1+ s = zf"“ '

O —e

As the nun}b\er of ¥’s in this sum is likely to be Jarge,
some convenient method of finding the approximate
value of :tZﬁe sum will be found useful. In attacking this
problent, we shall first of al] replace the factorials in (11)
a@;midma.tely by the first term of Stirling’s formula for

the representation of large factorials,

This formula? states that

(13) | =nren(2 1;2( _.L _.l_._ e

_ nl=n"e""2ry) 1+12n+288ﬂ2+ .

To form an idea of the degree of approximation obtajned
by using only the first term of this formula, we may say
that in replacing ! by %~ *(271)”2 we obtain a result
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equal to the true value divided by a number between 1
and 141/10#. The use of this first term is thus a suffi-
ciently close approximation for many purposes if » is fair-
ly large. The substitution by the use of Stirling’s formula
for factorials in (11) gives, after some algebraic simplifica-

tion, L& )
1 a\ P x)‘¢‘+"‘ 2N\

(14) yz‘*_(z"fqu)l/z (1 +5) (1 pr ”:}‘ \.

approximately. www.dbraulibrar){forg,jn

To explain further our conditions of appm\ximation to
(11), we naturally compare any individial discrepancy
% from the mathematical expectation, pswith the standard
deviation ¢ =(spg)"®. We should\iote in this connection
that o is of order sV if neither Agor ¢ is extremely small.
This fact suggests the proplfié]‘}y of assuming that s is so
large that x/s shall remalt negligibly small, but that
x/sY¥2 may take -ﬁnj“te’f\'fé.lues such as interest us most
when we are making\comparisons of a discrepancy with
the standard deviation. It is important to bear in mind

that we are fqr\th

he present dealing with a particular kind

of approximation.

Under the prescribed conditions of approximation, we
shall .x;’ét}r examine (14) with a view to obtaining a more
cgl\\\ieﬁient form for ¥;. For this purpose, we may write

&«
&

(15)

(16)

P,

+

log (

—sp—z—}
)

=—(sp+a+1) [s"; —.-2?“:?+§ qs(x)] ,

Q.
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where ¢(x) and $1(x) are finite because each of them
fepresents the sum of 5 convergent power scrics when x/s
is small at pleasure. From (14), (15), and (16),

byl B=@Qx 2,2
1 z__,__..__,______ —_
log 3:{2mspg) 1= Tipg dspy T 020

7N
F 4

where \?avgx(}b{% &lﬂ?fhzyﬁaﬂh& n ,'\ 4
Now if s is so large that (x/s) ¢, (x) Betotnes small, we
o
I SR
© Qrspg) IR TR

have

¥
as an approximation to ¥x in (1 1).

. As a first approximggiéii’ to the sum of the ordinates
in (12), we then write the integra]

(7 L (e Sy

Q
O\ 1 _x
3",(2,)1/2'6 i,
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therefore appropriately add an ordinate at x=4 to the
value given in (17), and obtain

{ i ¢ d 1 o
( 8) {2?5‘59’)1’_‘, _ds 2spg x+(21rqu)l/2 € 2spg
. , ¢ ‘:\.
for the probability that the discrepancy is between -~
—d and 4 inclusive of end points. A\
. {™

Another method of taking acgount, Lﬁf .E}:gg extra

. R : . . dbraulibragy or;
ordinate is to extend the hmltswoxf\'i’ntegratlpng% flgfjnby
¥ N

K7

L [
‘m\\ Fra.8

)
one-hali the unitat both the upper and lower limits,
That is, we write

\Y;
\V 1 itE .
(9) & (T%EPW,L_; ¢ ini d
'\\w
jf{fi\)‘iatce of (17}.
”\}, T We may now state the De Moivre-Laplace theorem:
N Given a constant probability p of success in eack of s
irials where s is o large number, the probability that the
discrepancy m—sp of the number m of successes from the
mathematical expectation will not exceed numerically o
given positive number d is given lo a first approximation by
(17} and io closer approximations &y (18) and (19).
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Although formuylas (17), (18), and (19) assume s
large, it is interesting €xXperiment by applying these
formulas to cases in which s s not large. For example,
consider the problem of tossing six coins. The most prob- .,

6L L 6L 61\1 25
A3t Ao 3z ’

www dbraulibrary org'i R

:(FPQ)Wz" ’ *H————(qu)wb-s .

Vs

A\ W
Then' \i@ﬁﬂace of (17) we have

N
2\v2 e
K& £i=(2) ['ta,

and in place of (18) we have

_ 2\yE &
(21) Py= (;r) f ehg L
- () (21rs;)q) iz »
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To give a general notion of the magnitude of the
probabilities, we shall now list 4 fow values of £; in (20)
corresponding to assigned values of 3. Thus,

6...0 6745 1 2 3 4
Fe.. 0 .% 68269 95450 99730 _gooyg O\

Extensive tahles giving values of the probagl:}iﬁty
integral and of the ordinat%mlﬂ}g.mgg@ﬁw&gﬁ% are
reaclily available. For example, the Glover Tc{bics af Ap-
plied M athematicss give Ps/2 for the arguthent s =x/¢
Sheppard’s table? gives (14P;)/2 for ‘the argument
§=x/e. O

We may now state the De I\fIgﬁ:T\c-:—Laplace theorem
in another form by saying that,the values of P; in (20)
and (21} give approximatipnéi ‘to the probability that
Vo —sp| <a(spg)V/2 for an @%signed positive value of 6.

In still another slightly different form involving rela-
tive frequencies, wedhay state that the values of £, in
(20) and (21} givegpproximations to the probability that
the absclute valudof the relative discrepancy satisfies the

&

C

inequality 5\
AN
”_ ARE
" ? ‘ <5(.§‘)

f{?ﬁﬁ\fery assigned positive valuc of 8.
A~ Inorder to gain a fuller insight into the significance of
N/ the De Moivre-Laplace theorem we may draw the follow-
Ing conclusions from (20): (e) Assuming as is suggested
by (20) that a § exists corresponding to every assigned
probability 2;, we find from d= 8(spg)1/? that the bounds
~d to +d increase in proportion to s%Z as s is increased
(&) From (20) and (22) it follows that for assigned prob-

e I
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abilities P; the bounds of discrepancy of the relaiive
frequency m2/s from p vary inversely as s'/2.

To illustrate the use of the De Moivre-Laptace
theorem, we take an example from the third edition of
the American Men of Science by Cattell and Brimhai"}
(p. 804). A group of scientific men reported 1,705 o)
and 1,527 daughters. The examination of these numbérs
brings up the following fundamental questions gfgimple
samphingy Ber thbide bt £ iorm to the hypdthesis that
1/2 is the probability that a child to be b"c‘}}n will be a
boy? That is, can the deviations be reasonibly regarded
as fluctuations in simple sampling, Under this hypoth-
esis? In another form, what is thé%-obabiljty in throw-
ing 3,232 coins that the nunbdr of heads will dificr
from (3,232/2) =1,616 by @§much, as or more than,
1,705—1,616 =897 \\

In this case, \
$=3282,  (pgs)¥2=28.425 ,
O

N\ d
d=1,705% 1,616 = 4313,
16=89, o Gr=3131

f the normal probability in-
that P =.9983, Hence, the prob-
ain 2 deviation more than 89 on

a single trial is approximately

Reférding to a table o
tegr‘a\i;}fe find from (20)
a:bﬂily that we will oht

corresponds to the probability p=1 /2 in (20) is some-
times called the quarlile deviation, or the probable ervor of
™ 38 an approximation to sp.

By the use of 5 table of the

Probability integral, it is
found from (20) that 4 =.674 Y g

S (spg)\2 approximately
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when P=1/2, and thus .6745{spg)¥? is the quartile
deviation of the number of successes from the expecta-
tion sp,

14. The law of small probabilities. The Poissen ex- ,

- porential function. The De Moivre-Laplace theorem does

™

g

\‘;

not ordinarily give a good approximation to the termsof
the binomial (p+¢)* if p or ¢ is small. If s is large)but
sp or 57 is small in relation“]:,‘9\gydmea%ﬂag};g&fgmseful
representation of terms of the binomial expansion (p+¢)°
by means of the Poisson exponential function.” Statistical
examples of this situation are what may" be called rare
events and may easily be given: T &gtumber born blind
per year in a city of 100,000, oi‘the number dying per
vear of a minor discase. R I

Poisson® had already a,sf{eé.i'ly as 1837 given the func-
tion involved in the trgatment of the problem. Bort-
kiewicz! took up the. pﬁ"of)lem in connection with a long
series of observatigus of events which occur rarely. For
example, one c{llak’nown series he gave was the frequency
distribution }Kthe number of men killed per army corps
per year ify the Prussian army from the kicks of horses.
The frefuiency distribution of the number of deaths per

ar{g:fféorps per year was:

:f\ Deaths......... ] 1 2 3 4
3 Frequency....,. 109 65 22 3 1

He called the law of frequency involved the “law of small
numbers,” and this name continues to be used although
it does not seem very appropriate. The expression “law of
small probabilities” seems to give a more accurate de-
scription. Assume, then, that the probability p Is smail
and that ¢=1—p is nearly unity. That is,  is the prob-
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ability of the occurrence of the rare event in question in a
single trial.

We then seek 2 convenient expression approximately
equal to

N
st Pm L] L
m! nl ’

pag ]

the probahilityubibmrocongrences and #» non—ogqﬁ?f‘ences
in m+n=s trials, R4
Replacing st and #! by means of Stirling’sformula we
obtain y T\\';
P~ n O

m~(_1‘:‘mi e A
With large values of 5 and velatively small valucs of m,
(1~m/s)+22 differs relatively little from (t—m/s), and
this in turn differs [Qaﬁ;?ely little from e~™, Fuyrther-
more, ¢"=(1- P differs very little from e—** since, on
the one hand, N

ME D =1mp D)
O
”\5.
and,‘on the oth, ,
\‘{\ other

S
NS

Introducing these approximations by substituting ¢~
for (1—-m/s)’+‘/2, and e for ¢* we have

B
P... = E P’“B"‘f’ .
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For rare events, of small probability p, np differs very
little from sp=\. Hence, we write

Amg—h

O\
m!

(23) Ppn=

N
for the approximate probability of m occurrences<of the
rare event. Then the terms, ‘M§§Q¢gl.ary_m,'g_;;’

2 33 &
e 5

. - SIET & \00‘
give the approximate probabilitiesrof exactly 0, 1, 2.
., occurrences of the rare e'fr}nt in question, and the
sum of serjes O

T L m
w0 o)
gives the probalility that the rare event F will happen
either 0, 1, 2,50, . , or m times in s trials.

Althopgh\we have assumed in deriving the Poisson
exponential function A"e—*/m! that m is small in com-
pariséihwith s, we may obtain certain simple and inter-
esting results for the mathematical expectation and stand-

;Qrd’ deviation of the distribution given by the Poisson
.\ exponential when m takes all integral values from =0
~ \"\ to m=s. Thus, when m=s in (24), we clearly have
N SV .
(25) e"*(1+)\+§-!+3‘1+ e +H)=1

approximately if s is large. )
Since the successive terms in {25) give approximately
the probabilities of 0, 1, 2, . . .. , s occurrences of the
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rare event, the mathematical expectation 3 mP, of the
number of such occurrences is

A3 A
8*"(0+7\+?\’+§!+ R +m) =

A ) St I
)\e*"£1+7\+:?_|+ sres +Eﬁ)_’
www.dbraulibrary drgin  <° N

&/
approximately when s is large. o)

Similarly, the second moment I ahogt;th'e origin is

3 T
J&i=€"‘[)\+2?\2+'2—!+ - (T-—-I_)T:I )

and the second moment aboul‘:{ the mathematical expec-

N

tation is N\
2 i—1 7
[ﬂz=#§—-?\"'=)\q“"‘?{1+2)\+%+ LI -I——&'—l--—T — AZ
& d (s—1)1]
N )‘2 Wit
=X p—A A
(26) "“".;':{1“’““2:"’(3*1)1]
x\ g2 1+)\+§+ e +_7"__2_- e
lAC 2 =51
.J‘bw= A+A'—) nearly =5p

W .21 approximation to spg since ¢ differs but little from 1.
/ Tables of the Poisson exponential limit e=*\*/x! are
given in Tables for Statisticians and Biometricians (pp.
113~24), and in Biometrika, Volume 10 (1914), pages 25-
35. The values of ¢7*\*/z! are. tabulated to six places of
decimals for A vary] g from .1 to 15 by intervals of one-
tenth and for varying from 0 to 37.
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A general notion of the values of the function for
certain values of A may be obtained from Figure 4 where
the ordinates at 0, 1, 2, .. .., show the values of the
function for A=.5, 1, 2, and 5.

Miss Whittaker has prepared special tables (Tables .,

for Statisticians and Biometricians, pp. 122-24) Wh,i\CH\"~\

facilitate the comparison of regylts framuthe, Rolsspn ex-
ponential with those from !
the De Moivre-Laplace ¥ TR
theory in dealing with the ~ NN\
sampling fluctuations of %_.__ N ]
small frequencies. The
question naturally arises
as to the value of p below
which we should prefer to %
usc the Poisson exponenf—fo T

tial in dealing with.(the L/ 2 4 -
probability of a diserep- 0= T W o X
ancy less than aﬁxﬁsﬁigned
number in pla.cbof the results of the De Moivre-Laplace
theory. While there is no exact answer to this question,
there seéins to be good reason for certain purposes in
restricting the application of the De Moivre-Laplace
resules to cases where the probability is pethaps not less

aE

£ @ -~
1]

E @
FiG. 4

/than p=.03.

W

To illustrate by a concrete situation in which # is
small, consider a case of 6 observed deaths from pneu-
monia in an exposure of 10,000 livesofa well-defined class
aged 30 to 31. It is fairly obvious, on the one hand, thac
the possible variations below 6 are restricted to 6, whereas
there is no corresponding restriction above 6. On the
other hand, if we take (6/10,000)=3/5,000 as the prob-

QY
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ability of death from pneumonia within a year of a per-
son aged 30, it is more likely that we shall experience 3
deaths than 7 deaths among the 10,000 exposed; for the

probability .
28N
10,000) 4,997)9-995( 3 )5 N\
3 5,000 5,000 %
www . dbraulibrary org.in ™\

of 5 deaths is greater than the probability M‘\ﬁ"

(10,000) (4,997 ”

) ()

3

of 7 deaths. OO

Suppose we now set the prgiblcm of finding the prob-
ability that upon repetitiom with another sample of
10,000, the deviation freti'6 deaths on either side will not
exceed 3. The value(to three significant figures calcu-
lated from the bif"i&nia.l expapsion is .854. To use the
De Moivre-Laplaee theorem, we simply make d=3 in
(19), and obfain from tables of probability functions the
value Py=1847. :

Weshiould thus expect from the De Moivre-Laplace
the({'rerri a discrepancy either in defect mere than 3 or in

‘e;'&ss rore than 3 in 100—84.7=153 per cent of the

o cases, and from the sum of the binomial terms we should

V™ expect such a discrepancy in 100 —85.4=14 6 per cent of
the cases.

Turning next to tables of the Poisson exponential,
page 122 of Tables for Statisticians and Biomelricians, we
find that in 6.197 per cent of cases there will be a dis-
crepancy in defect more than 3 and in 8,392 per cent of
cases there will be a discrepancy in excess more than 3.
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The sum of 6.197 and 8.392 per cent is 14.589 per cent.
This result differs very little for purposes of dealing with
sampling errors from the 15.3 per cent given by the
De Moivre-Laplace formula, but it is a closer approxima-
tion to the correct value and has the advantage of showing

N

scparately the percentage of cases in excess more thad )’

1

the assigned amount and the percentaglc in defect eri?e ’

wiww . dbrau ibr‘al'y_org. in,”
N
X

than the same amount.
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CHAPTER I11
FREQUENCY FUNCTIONS OF ONE VARIABLE~\\

15. Intsodwetidih BnCrgpser T we have discugsed very
briefly three different methods of describing ‘frequency
distributions of one variable—the purely gigphic method,
the method of averages and measures of\dispersion, and
the method of theoretical frequency fGhctions or curves.
The weakness and inadequacy of thé 'Bmely graphic meth-
od lies in the fact that it fails to g'i:vé a numerical descrip-
tion of the distribution, Whileithe method of averages
and measures of dispersiongives a numerical description
in the form of 5 summary\characterization which is likely
to be useful for man(s"tatistica] purposes, particularly for
purposes of compéfison, the method is inadequate for
some purposes heeayse (1) it does not give a character-
ization of the distribution in the neighborhood of each
point x opinteach small interva] % to x+-dx of the variable,
2) it“x:!&es not give a functional relation between the
v&k\{ég‘of the variable % and the corresponding frequen-
cies!

oY Togivea description of the distribution at each small
\™ interval x to x4dx and to give a functional relation be-

tween the variable x and the frequency or probability we
require a third method,
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pealing to underlying probabilities, and we seek a fre-
guency function y=F(x) such that Fix)dx gives to within
infinitesimals of higher order the probability that a vari-
ate «’ taken at random falls in the interval x to x+dx.

Although the great bulk of frequency distributions
which occur so abundantly in practical statistics have cer< \.
tain important properties in common, nevertheless they
vary sufficiently to present difthui e Broplénein e bider-
ing the properties of F(x) which should be rgg\aﬁzded as
fundamental in the selection of an approphidte function
to fit a given observed distribution. \) ”

The most prominent frequency fuétion of practical
statistics is the normal or so-calledGaussian function

®)
N

i -5
) ??a(zr);" :

where ¢ is the steésd’ard deviation (see Fig. 3, p. 35).
Although Gauss made such noteworthy contributions
to error thedry by the use of this function that his name
is very/gommonly attached to the function, and to the
COrI‘&épohding curve, it is well known that Laplace made
usewof the exponential frequency function prior to Gauss
& 3By at least thirty years. It would thus appear that the
<) name of Laplace might more appropriately be attached
to the function than that of Gauss. But in a recent and
very interesting historical note, Karl Pearson® finds that
De Moivre as carly as 1733 gave a treatment of the prob-
ability integral and of the normal frequency function.
The work of De Moivre antedates the discussion of La-
place by nearly a hali-century. Moreover, De Moivre’s
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treatment is essentially our modern treatment. Hence it
appears that the discovery of the normal function should
be attributed to De Moivre, and that his name might be
most appropriately attached to the function. It may well
be recalled that we obtained this function (1) in the D,
Moivre-Laplace theory (p. 34). In (1) the origin is taken
so that ng%p;%ggyfo@q gentroid of ares under the
curve is zero. The approxzimate value of the centteid nay
be obtained from a large number of observed: variates by
finding their arithmetic mean. The ¢ is equal to the radi-
us of gyration of the area under the ofiTve with respect
to the y-axis, and is obtained appreximately from ob-
served variates by finding their stahdard deviation. The
probability or frequency function (1) has been derived
from a great variety of hypotheses. The difficulty is not
one of deriving this function but rather one of establish-
ing a high degree of ptobability that the hypotheses un-
derlying the derivatioh are realized in relation to practical
problems of statistics,

In the decade from 1890 to 1900, it became well estab-
lished experithentally that the normal probability func-

tion is jnddequate to represent many frequency distribu-

tiongwhich arise in biological data. To meet the situation
it @as clearly desirable either to devise methods for char-

_>acterizing the most conspicuous departures from the

\ normal distributions or to develop generalized frequency

curves. The description and characterization of these de-
partures without the direct use of generalized {requency
curves has been accomplished roughly by the introduction
(see pp. 68-72) of measures of skewness and of peakedness
(excess or kurtosis), but the rationale underlying such
measures is surely to he sought most naturally in the
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properties of generalized frequency functions. In spite of
the reasons which may thus be advanced for the study of
generalized frequency curves it is fairly obvious that, for
the most part, the authors of the rather large number of
recent elementary textbooks on the methods of staﬁgtical
analysis seem to regard it as undesirable or impracticabloe\\‘
to inciude in such books the theory of generalized fres )
quency curves. T he writer is in@ﬁﬂﬂbim&ﬁ%.ﬂt%mése
anthors in the view that the complications of a theory of
generalized frequency Curves would perbaps have carried
them too far from their main purposes. \Nevertheless,
some results of this theory are importdnt for elementary
statistics in providing a set of nots for the description
of actual frequency distributionsiIn order to avoid mis-
understanding it should pe,rh:ips be said that it is not
intended to imply thata fé’;‘rﬁél mathematical representa-
tion of many nume;ical *distributions is desirable, but
rather that a certain ‘amount of such representation of
carefully select’g{[{diétributions chould be encouraged. A
useful purpogéwill be served in this connection if we can
make ceptaili points of interest in the theory more accessi-
ble by/jmeans of the present monograph. -

\'Tfié problem of developing generalized frequency

. t},ﬁﬁes has been attacked from several different directions.
Gram (1879), Thiele (1889), and Charlier (1905) in Scan-

dinavian countries; Pearsont (1895) and Edgeworth
(1896) in England; and Fechner (1897) and Bruns (1897)
in Germany have developed theories of generalized fre-
quency curves from viewpoints which give very different
degrees of prominence to the normal probability curve in
the development of a more general theory. In the present
monograph, special attention will be given to two systems
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of frequency curves—the Pearson system and the Graw-
Chatlier system.

16. The Pearson system of generalized frequency
curves. Pearson’s first memoir'® dealing with generalized
frequency curves appeared in 1895, In this paper he gave
four types of frequency curves in addition to the norm&l
curve, with three sul);%'ges under his Type I and twp ib-
types un&’er T{l I Hes pubhshed a supplementary
memoir* in 1901 which presented two furtheritypes. A
second supplementary memoir® which wag pubhshed in
1916 gave five additional types. PearsoQ s 'curves, which
are widely different in general appea rance are so well
known and so accessible that we sball take no time to
comment on them as ﬂraduatlon cutves for a great variety
of frequency d1str1but10ns, but we shall attempt to indi-
cate the genesis of the cur¥es with special reference to the
methods by which they“are grounded on or associated
with underlying prohabﬂltles

We shall co&s@er a frequency function y = F(x) of one
variable where we assume that F («)dx differs at most by
an mﬁmtesnnal of higher order from the probability that
a variaté » y taken at random will fall into the intcrval »
to #7+dw. Pearson’s types of curves y= F(x) are obtained
by\\htegration of the differential equation

O @ &y__(rta)y
} dx ot axtcpat’

and by giving attention to the interval on x in which
y=F(x)is posmve The normal curve is given by the spe-
cial case ¢1=¢;=0. We may easily obtain a clear view of
the genesis of the system of Pearson curves in relation to
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laws of probability by following the early stepsin the de-
velopment of equation (2). The development isstarted by
representing the probabilities of successes in # trials given
by the terms of the symmetric point hinomial (1/24+1/2)"
as ordinates of a frequency polygon. 1t is then easily
proved that the slope dy/dx of any side of this polygon, ¢*

= . a & \"\
at its midpoint, takes the form 2\

; www.dbl‘aulibral‘y,org”;u:
y_ _ ”.\ 3
(3 v Bzta)y, m'\'\ )
where y is the ordinate at this point, and's and k are
constants. By integration, we obtain {€eurve for which
this difierential equation is true apallpoints. The curve
thus obtained is the normal curve (Pearson’s Type ViD).
The next step consists in dealing with the asymmetric
point binomial {p +4)", p'-tq, in a manner analogous to
that used in the case/of the symmetric point binomial.

This procedure giyg‘s?the differential equation
'\

dy _(z+a)y
\& iz orax

fro wh}ch we obtain by integration the Pearson Type
I chrve
4 '\'.' N x ¥a
\"\‘ (4) y.—_y0<1+3) e,
That is, with respect to the siope property, this curve
stands in the same relation to the values given by the
asymmetric binomial polygon as the normal curve does
to values given by the symmetric binomial.

Thus far the underlying probability of success has
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been assumed constant. The next step consists in taking
up a probability problem in which the chance of success
is not constant, but depends upon what has happened
previously in a set of trials. Thus, the chance of getting
r white balls from a bag containing # white and #g black
balls in drawing s balls one at a time without replacements® b

is gwcn t\'yw dbraulibrary.org.in ‘ ;.\

NEOD._, ) ()l (n s
(5) o= (f/ me =) {lng—s T s—n!’

where (), means the number of permutauions of # things

iaken s at a time and ( ) is the num\er of combinations

of s things r at a time. This expressmn is a term of a
hypergeometric series. By 1gpresenting the terms of this
series as ordinates of a frequency polygon, and finding the
slope of a side of the frequency polygon, and proceeding
in a manner analOg’sus to that used in the case of the
point binomialf we-obtain a differential equation of the

form given in¥2). Thus, we maker=0,1,2, .. .., sand
obtain the §%1 ordinates yo, 1, %, . . . . , at umt inter-
vals AKthe middle point of the side joining the tops of
”cbtes ¥r and Y41, we have
’(6) x=f+% ’ 3’“—'%()'r+ym) *
and
dy _ -7 nh—r
- ax Yra—y= [f ¥i m 1]

=, Staps—ng—1—r(nt 2)
G ng—)
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From y= (yr+yv11)/2, we have

PO DRG]k
3’-—2%[(,.% 1)(r+1+nq—5)+1]

Fern

e ~1 -ﬂ'”tﬁ's—’:-%q'-}-l—-s+r(::zq-|—2-~1r*;3.‘:'—2$)+2r2 N
¥ G F DO+ 14ng—s) - O
From (7) and (8), replacing 7 by MAHE BT Sy
o L9 2s+2fzps——2nq—2—(2;\:—-1),(1?@-;'2)
v dx nps—l—nq-l—1—s-l-(x——%)(ﬂq+2—np'—32$)+2(x-—é)’ ’

From (9), we observe that the slope"g}fi\fhe frequency
polygon, at the middle point of anyﬁih‘e, divided by the
ordinate at that point is equal tg.azfr'action whose numer-
ator is a linear function of x atd whose denominator is a
quadratic function of 2.

The differential qua.tibn (2) givesa general statement
of this property. Ig»ingore general than (9) in that the
constants of (9) ﬂa\fé"special values found from the law of
probability invelved in drawings from a limited supply
without rgplacements. One of Pearson’s generalizations
therefor@\ronsists in admitting as frequency curves all
thos‘&:c"ﬁ}kres of which (2) is the Jifferential equation with-
Qu.t’hle limitations on the values of the constants involved

S "in"(g)-

\ ) The questions involved in the integration of (2) and
it the determination of parameters fof actual distribu-
tions are so available in Elderton’s Frequency Curves and
Correlation, and elsewhere, that it seems undesirable to
take the space necessary to deal with these questions
here. The resulting types of equations and figures that
indicate the general form of the curves for certain positive
values of the parameters are listed below.
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TyeE I (Fis. 5)

Y
£\ ™ T ™
(22
(12 (1)
where )
'S
wwﬂ—zult_d:i}'{lhaulibrary_oru in A
I 0 54, 0 (=4, X
F1a.5 79 ¢
'\'\."
NN
Tyrk I (F1G. 6) V
.\’ X
w4 %=-2 0

F.m.’i’
Tyre IV

- AN x
y—yn(1+~a—2) e~ructan’

desci*bsfgw curve of Iunﬁmited range at both ends, roughly
M general appearance as :
normal curve (for the a slightly deformed

vormal curve, see Fig. 3, p. 35). -
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Tyre V (Fic. 8)

Y
N
y=yx e * . ¢ <>‘;
..:’\ ~
wwy.dbraulibrary. okg.i&r’
| ‘L&\ }
Fia.8 ",\' {/\X
»
Tyee VI (F1G. )’2}\'
y O

v/

=yo(x—a)B % .

\%fYPE VII (Fie. 3, P. 35)

> -5
o N\ _ 2.5
{:}?} y=¥& -
NFhe normal frequency curve.
N\
Q~ Tyex VIII (F15. 10)
t ¥

L\
y'—‘}'o(l'l'a) .

o= i)
xF?G.lO
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This type degenerates into an equilateral hyperbola
when m =1,

Tyee IX (Fro. 11)

L)) —

X

\TE:.S type is Laplace’s first frequency curve while the
Jhormal curve is sometimes called his second frequency

™

/\Scurve, The curve is shown for negative values of +x/o.
a\Y
\V4 Tyre XTI (Fro. 13)
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Tyer XII (F1c. 14)
y f

_ ‘(gh—i-x ’
y=do 2 X
"N

Far vl dyaylbrary gog.in

The above figures should be regarded as gogghly illus-
trating only in a meager way, for particular positive val-
ues of the parameters, the variety of Shapes that are
assumed by the Pearson type curyes.(For example, it is
fairly obvious that Types I and I would be U-shaped
when the exponents are neghtive, and that Type IIL
would be J-shaped if ya yyeié ‘negative,

The idea of obtamh)g.’é suitable basis for frequency
curves in the probabilitics given by terms of a hyper-
geometric series i§the main principle which supports the
Pearson curyesias probability or frequency curves, rather
than as mce graduation curves. That is to say, these
curves should have a wide range of applications as proba-
biiigz(;;} frequency curves if the distribution of statistical
material may belikened to distributions which arise under

«the Taw of probability represented by terms of a hyper-
¢\ “geometric series, and if this law may be well expressed by
determining a frequency function y= F{z) from the slope
of the frequency polygon of the hypergeometric series.
In examining the source of the Pearson curves, the fact
should not be overlooked that the normal probability
curve can be derived from hypotheses containing much
broader implications than are involved in a slope condi-
tion of the side of a symmetric binomial polygon.
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The method of moments plays an essential réle in the
Pearson system of frequency curves, not only in the de-
termination of the parameters, but also in providing
criteria for selecting the appropriate type of curve. Pear-
son has dttempted to provide a set of curves such tha;if\:\
some one of the set would agree with any observatiqml "
ot theoreticalltirenlibrsy arevier of positive ordingtésby
having equal areas and equal first, second, thicd, “and
fourth moments of area about a centroidal-axs.

Let um be the mth moment coefficient atgouf a centroid
vertical taken as the y-axis (ci. p. 19&1’%&{ is, let

o0 4 "N\’
(10 = f P,
— A :..

R X

where F(z) is the frequerié} function {sce p. 13).
Next, let

'im’\ B = s/ s

&

and O

& \ ﬂ?z ’-“4/ .’-‘22 .

Tlm@..\it is Pearson’s thesis that the conditions me=1,
J=0, together with the equality of the numbers us, B1,
X ~and B, for the observed and theoretical curves lead to
b equations whose solutions give such values to the par-

ameters of the frequency function that we almost invaria-
bly obtain excellency of fit by using the appropriate one
of the curves of kis system to fit the data, and that bad-
ness of fit can be traced, in general, to heterogeneity of
data, or to the difficulty in the determination of moments
from the data as in the case of J- and U-shaped curves.
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Tet us next examine the nature of the criteria by
which to pass judgment on the type of curve to use in
any numerical case. Obviously, the form which the inte-
gral ¥="F{x) obtained irom (2) takes depends on the

nature of the zeros of the quadratic function in the de-
nominator. An examination of the discriminant of thig ™

quadratic function leads to equalities and inequalities in-
volving 8 and B, which serve as o AR éﬂggﬂon
of the type of function to be used. A systema‘gicfpi'ocedure
for applying these criteria has been thoroughly developed
and published in convenient form in Pearson’s Tables for
Statisticians and Biometricians (19}4‘}, ‘pages Ix-Ixx and
66-67; and in his paper in ke Pkélos‘oxpk@'cal Transactions,
A, Volume 216 (1916), pages 429-57. The relations be-
tween G and B may be.gonveniently represented by
curves in the 8;-8; planel Then the normal curve corre-
sponds to the point S0, f2=3 in this plane. Type II1
is to be chosen when the point (8, Ba) is on the line
252—331—6=9;\}nd Type V, when (81, B2) is on the
cubic A
BB+ 3= 448, 36) (25— 31— O)
&

~Hreonsidering subtypes under Type I, a biquadratic
ih8; and 8 separates the area of J-shaped modeless curves

.. (STrom the area of limited range modal curves and the area

O

of U-shaped curves.
Without going further into detail about criteria for
the selection of the type of curve, We may sunmarize by

saying that curves traced on the p Prplane provide the.

means of selecting the Pearson type of frequency curve
appropriate to the given distribution in so far as the neces-
sary conditions expressed by relations between B and Bz

Q.
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turn out to be sufficient to determine a suitable type of
curve.

The difficulties involved in the numerical computation
of the parameters of the Pearson curves were rather cleat-

ly indicated in Pearson’s original papers. The appropriate ¢

tables and forms for computations in fitting the curves to,
numerical, distgibatiohsahg we hesn so available in variods
books as to facilitate greatly the applications to goneretc
data. Among such books and tables, spegiak mention
should be made of Freguency Curves and-Correlation
(1906), by W. P. Elderton, pages 5-105 ; Bgbles for Statis-
ticians and Biometricians (1924), by Karl Pearson; and
Tables of Incomplete Gamma Funglions (1921), by the
same author,

17. Generalized normal ¢urves—Gram-Charlier se-
ries. Suppose some simpleftéquency function such as the
normal function or the\Poisson exponential function
(p. 41) gives a rough'?iﬁproximation to a given frequency
distribution and that we desire a more accurate analytic
‘Tepresentation (than would be given by the simple fre-
quency funetien. In this sitvation, it seems natural to
seek an dhalytical representation by means of the first
few terms of a rapidly convergent series of which the first
tt;rg‘l,\called the “generating function,” is the simple fre-
quency function which gives the rough approximation.
~ Prominent among the contributors to the method of
the representation of frequency by a series may be named

Gram," Thiele v Edgeworth," Fechner,® Bruns® Char-
lier,” and Romanovsky.2

Our consideration of series for the representation of
frequency will be limited almost entirely to the Gram-
Charlier generalizations of the normial frequency function

Ny
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and of the Poisson expenential function, by using these
functions as generating functions. These two types of
series may be written in the following forms:

TvyrE A A

2\

(11 F() = anb(x) Fa® @) -+ -+ Hod® @)+ - L7
wiwrw .d bl'aulibral'y.m@ti"u
here D
where o\
=B \4
= e 20° >
$() (2% ¢ ) ,’:\\"
x\‘

and ¢™(x) is the nth derivative of $(x) with respect to x.

']:Y‘PEB
(12) Flx) =ce¢(x)+<,g\¢(})+ R N 2 L N
)
where N \\

L)
p W/

:_‘é"‘ésinarx | . a }
‘b(f}\" pa {:a: GoDi =02
’x‘,/
R\ e~ A"
..\‘;' = 2’

\
N/

which is the Poisson exponential for non-negative integral
values of %, and where AY(x), A(x), . - - denote
the successive finite differences of y(x) beginning with
AP (x) = (x) gz —1).

If Type A or Type B converges 6 rapidly that terms
after the second or third may be neglected, it is fairly

N\
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obvious that we have a simple analytic representation of
the distribution.

The general appearance of the curves represented by
two or three terms of Type A, for particular values of the
coefficients, Is shown in Figure 15 so as to facilitate comgs «

www.dbraulibrary,o?’g,jn \ ™

4 Fia, 15

{‘:;’:‘ﬁ(x), the normal curve
- 3=¢{2)+ 256 (2)
> ¥=¢{x) 4 b (2) + Fp (0 ()

parisely mth the corresponding normal curve represented
by@xe first term.
3" A general notion of the values of the function repre-
O sented by the first term of Type B may be obtained for
\ ) particular values of A from Figure 4, page 43. When \ is
taken equal to the arithmetic mean of the number of
occurrences of the rare event in question, we shall find
that ¢,=0. We may then well inquire into the general
appearance of the graph of the function

V() + i ()
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for particular values of czand A. For A=2 and 2=~ 4,
see Figure 16, which shows also the corresponding P(z).

! - A
AN
2N w
s N

www . dbraulibrarys 0(1' g ‘ in

"
>
7] T T B p [ T 3 X
F1e. 383 - '
A=2 ey
L y=2y(z}

ey =y(x) — 4A%{x)

<\

It should pt{{ﬁ}iﬁly be emphasized that the usefulness
of a series representation of a given frequency distribu-
tion deperds largely upon the rapidity of convergence.
In turmthe rapidity with which the geries converges de-
pe}lQé.\ﬁiuch upon the degree of approach of the generat-
,ir}‘g\function to the given distribution.

) »" Although it is known® that the Type A series is capa-
\\‘; * ble of converging to an arbitrary function f(x) subject to
certain conditions of continuity and vanishing at infinity,
mere convergence is not sufficient for our problems. The
representation of an actual frequency distribution re-
quires, in general, such rapid convergence that only a few
terms will be found necessary for the desired degree of
approximation because (1) the amount of labor in compu-

tation soon becomes impracticable as the number of terms
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increases and (2) the probable errors of high-order mo-
ments involved in finding the parameters would generally
be so large that the assumption that we may use moments
of observations for the theorctical moments will become
invalid. N

13. Remarks on the genesis of the Type A and Type.))
B forms» Weé WaBBIY ¥R &ty a generalization of( the
normal frequency functien should take the form ¢fType
A rather than some other form, say the prodtct of the
generating function by a simple polynomialoblow degree
in x or by an ordinary power series in %, " similar ques-
tion might be asked about the generaliZition of the Pois-
son exponential function. There sééms to be no very sim-
Ple answer to these questions. It\id fair to say that alge-
braic and numerical conveniente, as well as suggestions
from underlying probability-theory, have been significant
factors in the selection 6fT'ype A and Type B. The alge-
braic and numerical ¢onvenience of Type A becomes fairly
obvious by f l@arihg Gram in determining the par-
ameters. The%uggcstion of these forms in probability
theory is closely associated with the development of the
hypothesx:s\of elementary errors (deviations) as given by
Charlier® A very readable discussion of the manner in
which’'the Type A series arises in the probability theory
«of'the distribution of a variate built up by the summation
(O of alarge number of independent elements is given in the

recent book by Whittaker and Robinson on The Calculus
of Observations, pages 168-74.

In the present monograph, we shall limit our discus-
sion of the probability theory underlying Types A and B
to showing in Chapter VII that a certain line of develop-
ment of the binomial distribution suggests the use of the
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Type A scriesas an extension of the ordinary De Moivre-
Laplace approximation, and the Type B series as an ex-
tension of the Poisson exponential approximation con-
sidered in Chapter IT. This development is postponed to
the final chapter of the book because it involves more
formal mathematics than some readers may find it con*\:}
venient to follow. Certain important re nlts gieriqulih
Chapter VII are stated without proof I ‘g%bfﬁiﬂ?% fWllile
a mastery of the details of Chapter VII is no essential
to an understanding of the results given in'§§,19-21, the
reader who can follow a formal mathematical develop-
ment without special difficulty may'\%tel read Chapter
VII at this point instead of reading 8% 19-21. In § 56 of
Chapter VII we follow closely, the recent work of Wick-
scli® in the development of ¢he'forms of the Type A and
Type B series. Thenin §657-59 we deal with the princi-
ples involved in the datermination of the parameters in
these type forms,, O

19. The cosfivients of the Type A series expressed in
moments of the observed distribution. If we measure *
from thedehtroid of area as an origin and with units equal
o the\’é}aindard deviation, o, we may write the Type A
sg\r@d’n the form

~O (13 % F(x) = ¢(3) Fad® () Hap@ @)+ oo +a.0™ (%)
Q- ¢ ..

—2'2

1
where b(x)= ORI e,

and &™(x) is the nth derivative of ¢{x) with respect
to .
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It will be shown in § 57 that the coeflicients ¢, for
(n=3,4,....) may then be expressed in the form

(14) a..=5£;—ll-)-” f " PO HL () dx

where www.dbraulibrary org.in \

. w{n—1) Hln(n D(n—2)(n— 3) ______
Hafx) =at~—— Td

~NY;
is a so-called Hermite polynomial. (0>

To determine . numerically, we replace F(x) in (14)
by the corresponding observed frequency function f{x},
and replace & by x/7 if we me‘a.sure x with ordinary units

(feet, pounds, etc.) instegd of using the standard devia-
tion as the unit. Then we'may write

(15) a\a ”" (2 ).

se;{;aae values of H,(x/¢) for n=3, 4, 5 in (15),
and we obtain coefficients in terms of moments as follows,
“the symbol g, for the quotient yu,/¢*

1
ae= 1 (k= 3p) = =1 (mz 3,

1
&=~ = (s — 10p0?) = — 5 (Gs 10ay) .
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20. Remarks on two methods of determining the co-
efficients of the Type A series. It will be shown in § 87
that formula (14) for any coefficient a, of the Type A
seties may be derived by making use of the fact that
#®(x) and the Hermite polynomials H,(x) form a
biorthogonat system. Then as indicated on page 168 wel )
o-bta,in @, in terms of momcnts@i:ﬁ%‘i’k’éﬁ%‘f‘%‘;ydéﬁtgﬁigu_ -
f10m. N
As a second method of obtaining s in tepra’s of the
moments of the observed distribution JEIN will L:'e
shown in § 38 that the values of the cqa@gients giverE in
§ 19 may be derived by imposing t];je\leést—squares crite-
rion® that PAY;

toe ] 2
(16) = f_ e dx

shall be 2 minimufi®
21. The codficients of the Type B serles. For the
Type B serigs 12), we shall for simplicity limit the deter-
mination ¥ coefficients to the first three terms. 1_\’101'9'[
over.,"gée\ Shall restrict our treatment to 2 -distnbutlon 0
My distant ordinates at non-negative integral values
0. Then the problem is to find the coefcients & & Gt

4 .\' 3

O Fa) = p(x)+erbg (x) Tl

wihere

—h AF

W=

forx=0,1,2,....
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By expressing the coefficients in terms of moments of
the observed distribution as shown in § 59, we find

cﬂ=1; cl=0: Gﬂ=%(.u'5.—)\}r

when X is taken equal to the arithmetic mean of the gigen)
observed values. « \

22. Remarks. With respect to the selection(of\Type
A or Type B of Chatlier to Tepresent given @umerical
data, no &{i%@.@{]l@%mg to the Péakson criieria
has been given which enables one to distifiguish between
cases in which to apply one of thes “©pes in preference
to the other, but Type B applieg{in general, to certain
decidedly skew distributions; afld; in particular, to dis-
tributions of variates having2 natural lower or upper

N

bound with the modal freqiency much nearer to such
natural bound than to the other end of the distribution.
For example, 5 fregqiency distribution of the number dy-
ing per month j 4.0ity from a minor disease would haye
the modal valu@near zero, the natural lower bound.
While the’systematic procedure in fitting Charlicr
curves tq ’gl}ita is not so well standardized as the methods
used ih)fitting curves of the Pearson system to data,
tab‘{(’;s; of ¢(£), where ¢ is in units of standard deviation, of

dtsintegral from 0 to f,and of its second to cighth deriva-

() tives are given to five decimal places for the range (=0

1

tot=>3 at intervals of .01 by James W. Glover,® and tables
of the function, its integral and first six derivatives arc
given by N. R, Jorgensen® to seven decimal places for
t=0to =4, )

23. Skewness. Charlier has fittingly called the coeffi-
cents a;, o4, as, . . , along with the mean and standard
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deviation, the characteristics of the distribution. The co-
efficients ¢ and ¢, may be interpreted soasto give charac-
teristics which appear very significant in a description of
a distribution to a general reader with little or no mathe-
matical training. It is the common experience of those
who have dealt with actual distributions of practical sta{ )y
tistics that many of the distributions are not symmetriCal: -
A measure is needed to indicate the degree of asyrgnigetry
or skewness of distributions in order that we/mdy de-
scribe and compare the degr&w@ﬁ%ﬂ%ﬁ%@%ﬁﬁfﬁnt
distributions. \

A measure of skewness is given b{’ >

(1?) S="3(13=—‘£=:%'a:s .

Another measure of skewpesé"is

(18) g 2~Méém— Mode .
~\ 4
_— ¢ ]

n this latter méxsure we have adopted 2 convention as
to sign by whieh the skewness is positive when the mean
is greater iﬁan the mode. Some authors define skewness
as equaliumerically but opposite in sign to the vaiue in
qu%eﬁlﬁtion.

3 We may easily prove that the measures (17) and (18)
~Cere equal for a distribution given by the Pearson Type
N/ 11 curve, and approximately equal for 2 distribution giv-
en by the first two terms of the Gram-Charlier Type A
when § as defined in (17) is not very large.
For the Pearson Type 1II (p- 54},
dy_(x+a)y
dx ct+oax
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When the parameters in this equation are expressed in
moments about the mean, the equation takes the form

1dy_ atus/2o?

yax  pptusr/2q0 ! A
\)

n

O
if the origin is at the mean of the distribution. Theutede

is the value of % for which A0
S\
o )
g =0 or x=——'u~% N
o N
D

R

That ig, v

2
¢
5

é

q\n’

Hence the measures (Ig) and (18) are equal for the Type
IIT distribution. \!

. e . ENG .
Fora distribiation given by the first two terms of Type
A, we are to comsider the frequency curve

NS/

x?’i,b‘yz B{x) + 2gp® (x)

2
=__1__[1_£3_ x_ 2N i
o(2n) 2 T2\ T3] ¢

Q" R [T

£ 3

::0(2,,.)1;2

We shall now prove that the distance from the mean

{origin) to the mode is approximately —¢.5 when S is
fairly small,
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We have from (19)

log{ya(2a)t/%] = —%:,_,-—i—log[l —S(ﬂ:— xis)]

a2 Sfx A N o
nsw) O

. N
%
-

if we neglect terms in 5% Then N

tdy x S, w5 &Y
ot Em — [ =N
yd ot o o 2 v

at the mode, Solving the quadrfg.f[}.ff: for x we obtain
x=~aS ii we neglect terms ¢fthe order S*. Hence, the
rieasurcs (17) and (18) are apptoximately equal for a dis-
iljibution gi-ven by the fgr%f :\9\‘;?« tggrll%suﬂi] ?’agyr.%{%_. i(r;harlier
Type A series. ON

24, Excess. In the general description of a given fre-
quency distribytion, we may add an important feature to
the descrip iqf‘rﬁoy considering the relative number of
variates ibthe immediate neighborhood of some central
value sgch as the mean or the mode. That is, it would
addsfethe description to give a measure of the degree of

\g”&)itdness of a frequency curve fitted to a distribution
by

comparison with the corresponding normal curve
fitted to the same distribution. The measure of the peak-
edness to which we shall now give attention is sometimes
called the cxcess and sometimes the measure of kurtosis.
The excess or degree of kurtosis is meastured by

E=3a4=%(§—:—3)=§(a4-—3).

If the excess is positive, the number of variates in the
ncighborhood of the mean is greater than in a normal dis-
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tribution. That is, the frequency curve is higher or more
peaked in the neighborhood of the mean than the corre-
sponding normal curve with the same standard deviation.

On the other hand, if the excess is negative, the curve is
more flat topped than the corresponding normal curve. .
"To obtain a clearer insight into the relation of the Measure \)
of excess to the theoretical representation of frequendy

let us consider a Gram-Charlier serics of Type A td three
terms O

[ y=¢{x}+a:0® (x) + a0 ()
o N

=_e__2?_ l_ﬁ &m‘f ‘\ .
o(2a)ts? 6\ & 0‘3.:..'
(20) www.dbraulibrary,org:tl;ﬁl(p4_ ) o 6_x2 )]
AR =i

e /
Ny
o

_ e @ [ L B\ B/e 6
—r"—*(z,r)u{{*?m(r;)‘*“g(r?“)]

When we\'cbrhpare the ordinate of (20) at the mean
x=0 with the ordinate 1/6(2x)*/2 at the mean for the
normalelirve, we observe that this ordinate exceeds the
cor;\e&oﬁnding ordinate of the normal curve by E/ca(27) V2.
That'is, the excess E is equal to the coefficient by which

A multiply the ordinate at the centroid of the normal

\/ curve to get the increment to this ordinate as calculated
by retaining the terms in ¢ (x) and ¢“(x) of the Type
A series,

25. Remarks on the distribution of certain trans-
formed variates. Underlying our discussion of frequency
functions, there has perhaps been an implication that




TRANSFORMATION OF VARIATES 73

the various types of distribution could be accounted for
by an appropriate theory of probability. There may, how-
ever, he other than chance factors that produce significant
effects on the type of the distribution. Such effects may »
in certain cases be traced to their source by regarding the
variates of a distribution as the results of transformations
of the variates of some other type of distribution, Edge-
worth was prominent in thus regarding certain “distribu-
tions. For simple examples, we may think“’o\f'\ihe diame-
ters, surfaces, and volumes of spheres thdt represent ob-
jects in nature, such as oranges on a tree or peas on a
plant, Suppose the distribution ofdiameters is a normal
distribution. It seems natural }\aquire into the nature
of the distribution of the,Goitespending-surfasgs and
volumes. The partial ans@er to the inquiry is that these
are distributions of pqsi:ﬁ\?e skewness. The same kind of
probiem would arisesdf we knew that velocities, ¢, of mole-
cules of gas wergmormally distributed, and were required
to investigatédhe distribution of energies mv?/2.

To illustrate somewhat more concretely with actual
data it {i}a}: be observed in looking over the frequency
dist}‘il)‘{ltions of the various subgroups on build of men,
in dlame I of the Medico-Actuarial Mortality Investiga-

:}‘z}u, that the distributions with respect to weight are, in
“\general, not so nearly symmetrical as the distributions as

to height. In fact, the distributions as to weight exhibit
marked positive skewness. For example, in the age group
25 to 29 and height 5 feet 6 inches we find the following
distribution:
W.o.oooo.o.. 105 120 135 150 165 180 195 210
Fooooion 17 722 2,175 1,346 485 155 33 3,

Where W=weight in pounds, F={requency.
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A similar feature had been observed by the writer in
examining many frequency distributions of ears of corn
with respect to length of ears and weight of cars. The
distributions as to weight showed this tendency to posi-
tive skewness, whereas the distributions as to lengths of R
ears were much more nearly symmetrical. It scems natue\Jy
ral to assume that the weights of bodies are closcly cofig:
lated with volumes, We may next take account{&fithe
fact that volumes of similar solids vary as the ‘@tbes of
like linear dimensions.

Such concrete illustrations suggest theéyinvestigation
of the equation of the frequency curvedt ¥alues obtained
by the transformation of va.riates'of 4 normal distribu-
tion by replacing cachivariate of the normal distribution
by an assigned function of [:he:form kx®, where ki3 o
positive constant and # is a fositive integer or the recipro-
cal of a positive integer, A'paper on this subject by the
writer appeared in the Mnnals of Mathematics™ in June,
1922. The skewqés’observed in the distributions of
weights is simflar‘to the skewness which results as the
effect of this .Erimsformation when # is a positive constant.

From, & different standpoint S. D. Wicksell® in the
Arkip fof-Matematik, Astronomi, och Fysik in 1917 has
discugsed, by means of a generalized hypothesis about cle-
mentary errors, a connection between certain functions

;;Bf’a variate and a genetic theory of frequency. The hy-
* potheses involved in this theory are at least plausible in

their relation to certain statistical phenomena. There are
thus at least two points of view which indicate that the
method which uses variates resulting from transformation
may rise above the position of a device for ﬁtting distribu-
tions and be given a place in the theory of frequency. A

N\
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recentt paper® by K. L. Dodd presents a somewhat critical
study of the determination of the frequency law of a func-
tion of variables with given frequency laws, and another
recent paper® by S. Bernstein deals with appropriate
transformations of variates of certain skew distribu-
tions. K\
26. Remarks on the use of various frequency;fum“:’-
tions as generating functions in a series represeigtzition.
In the Handbook of Mathematical Statistics ,(I9t24)0, page
116, H. C. Carver called attention fo cert:ri}x\generating
functions designed to make frequency sefies-more rapidly
convergent than the Type A series., I paper published
in 1924 on the “Generalization ofSome Types of the Fre-
auency Curves of Professor,Péai‘son” (Biometrika, pp.
106-16), Romanovsky has q‘%’é"&‘i%%rf%ﬂ%"ﬁéﬁﬁ‘é%ﬁ? func-
tions of Types I, TI, and T as the generating functions
of infinitc series in which these types are involved in a
manner analogousdo the way in which the normal proba-
bility functioKié"ifwoivcd in the Gram-Charlicr series.
When ‘Bype'l,

@
B\ ah = x '8__}70“0
~0 5"’”(““ a) (“'5) Tww

A
2 &
s used as a gencrating function, certain functions g,

(0" which are polynomials of Jacobi in stightly modified form,

N/ occurinthe cxpansion in a way analogous to that in which
the Hermite polynomials occur in the Gram-Charlier ex-
pansion. Morcover, the analogy is continued because
tudy and ¢ form a biorthogonal system, and this prop-
erty facilitates the determinations of the coefficients in
the series.
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When the Type I function
}'=yn(1+£)me_"‘

is used as a generating function, certain funetions q.f:;,\
which are polynomials of Laguerre in gencralized i:srm
play a role similar to that of the polynomials of Hmmte
in the Gram-Charlier expansion. ' '\.

While it is at least of theoretical intergst that various
frequency functions may assume réles m\the series repre-
sentation of frequency somewhat siwfilar to the vdle of
the normal frequency function s Koﬁne Gram-Charlier
theory, the fact should not be overlt)oked that the useful-
ness of anymﬂbsudﬂ:menlgai&an in applications to nu-
merical data is much restficted by the requirement of
such rapid convergence of the series that only a few terms
need be taken to obi‘ﬁ\z a useful approximation.

‘l

O\



CHAPTER IV
CORRELATION

N

27. The meaning of simple correlation. Suppose’ wo'
have data consisting of ¥ pairs of corresponding vatiates
(s, v), i=1,2,. ..., N. The given pairs of values may
arise from any one of a great variety of sithations. For
example, we may have a group of men fu which x repre-
sents the height of a man Ny
and v his weight; wemay \ v .
have a group of fathers ww\&.l:l‘]ﬁraulibl qry_?m"g«in-
and their oldest sons in %\ TR
which x is the stature of {3
a father and y that of his®
oldest son; we mayhave
minimal daily, témpera-
tures in WhigN is the
minimal daily’ tempera-
ture at New York and y i 19
the ,e@i}esponding value
fgs}(}h’icago; we may be considering the effect of nitrogen

31 wheat yield where & is pounds of nitrogen applied

) per acre and y the wheat yield; we may be throwing

NN
\

\ 3

two dice where  is the number thrown with the first
die and y the number thrown with the two dice together.
If such a set of pairs of variates is represented by dots
marking the points whose rectangular co-ordinates are
(x, ), we obtain a so-called “tgeatter-diagram.” o
Assume next that we are interested in a quantitative

77
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characterization of the association of the x's and the cor-
responding 4’s. One of the most important questions
which can be considered in such a characterization is that
of the connection or correlation as it is callec hetween the
twe sets of values, It is fairly obvious from the scatter-
diagram that, with values of # in an assigned interval da, Oy
(dx small), the corresponding values of y may differ Cof-)
siderably and thus the y corresponding to an assigued
cannot be given by the use of a single-valued fup€jen of
z. On the other hand, it may be casily shd¥id that in
certain cases, for an assigned x larger than (Mewmican value
of «’s, a corresponding y taken at randafg)is much more
likely to be above than below the niéah valuc of 3's. In
other words, ‘Ehje x’s and 1's are notAndependent in the
probaljili\fyw%hsé B fntl%?ggh%pcé:“’]fhcrc i3 often in such
situations a tendency for th,c;’défts of the scatter-diagram
to fall into a sort of bapd“which can be fairly ‘well de-
scribed. In short, therelexists an important field of stutis-
tical dependence andheonnection between the regions of
perfect dependence given by a single-valued mathematical
function at oup extreme and perfect independence in the
probability &énse at the other extreme. This is the ficld
of correlated variables, and the problems in this feld arc
so varied in their character that the theory of correlation
TP.E?Y'PTOPETIY be regarded as an extensive branch of mod-
~ern methodology.

\/ 28. The regressive method and the correlation sur-
face method of describing correlation. Tt may help to
visualize the theory of correlation if we point out two
fundamental ways of approach to the characterization of
a distribution of correlated variables, although the two

methods have much in commou, The one may be called
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the “regression method,” and the other the “correlation
surface method.”

T.et us assume that the pairs of variates {x, y) are
represented by dots of a scatter-diagram, and set the
problem of characterizing the correlation. First, separate
the dots into classes by selecting class intervals dz. When,
we restrict the «'s to values in such an interval dz, thp\éér.\
of corresponding v’s is called an z-array of ¥’s or sihply
an array of y's. Similarly, when we restrict thé, assign-
ment of ¥'s to a class interval dy, the correshonding set
of #'s is called a y-array of #’s or simply andrray of x’s.
The whole set of arrays of a variablegsay of ¥, is often
called a set of parallel arrays, "

The regression curve y=f{x) of Jvon x for a population
is defined to be the locus of th€ebwardibrabyecfpanof the
variable y in the array wh’gt:]:i corresponds to an assigned
value of z, as dx approaﬁhés zero, In other words, the
regression curve of 4 en « is the locus of the means of
arrays of ¥’s of, ¢he theoretical distribution, as dx ap-
proaches zerg. )

These cqfuivalent definitions relate to the ideal popula-
tion from Which a sample is to be drawn. The regression
cur\{e\“ﬁq\fnd from a sample is merely a numerical approxi-

rru\@;eh to the ideal set up in the definition.

\ n the regression method, our first interest is in the

(" Yegression curves of y on x and of # on y. We are inter-

O

ested mext in the characterization of the distribution of
the values of y (atray of y’s) whose expected or average
value we have predicted. This is accomplished to some
extent by means of measures of dispersion of the values
of y which correspond to an assigned value of #. To illus-
trate the regression methed by reference to the correlation

Q)
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between statures of father and son, we may say that
the first concern in the use of the regression methed is
with predicting the mean stature of a subgroup of men
whose fathers are of any assigned height, and the next
concern is with predicting the dispersion of such a sub- A
group. The complete characterization of the theoreticald *2
distributions underlying arrays of ¥’s may be regarded 2s
the complete solution of the problem of the statfstical
dependence of ¥ on 2. R4

In the correlation surface method for thevwo vari-
ables, our primary interest is in the characterization of the
probability ¢(x, ¥)dx dy that a pair of ¢érfesponding vari-
ates (v, y) taken at random will falMinto the assigned
rectangular area bounded by « to\x-Fdx and v to y-+dy.
This metﬁ’dﬁwrﬁﬁj?ab]ébfééirﬂ'%ﬂrﬁs’an extension to func-
tions of two or more variablesiof the method of theoretical
frequency functions of gne variable. To get at the mecan-
ing of correlation by,this method, suppose that a func-
tion g{x) is such thatg(x)dx gives, to within infinitesimals
of higher order;“the probability that a varate x taken
at random }iés between x and x+dx; and suppose that
h(x,y)dy gives similatly the probability that a variate
y tak@%éi‘t‘ random from the array of values which cor-
respond to values of «x in the interval x to x4 dx will lie
between v and y-+dy. Then the probability that the two

{"events will both happen is given by the product

(1 Bz, y)dx dy=g(x)h(x, y)dx dy .

For the probability that both of two events will happen
is the product of the probability that the first will happen,
multiplied by the probability that the second will happen
when the first is known to have happened.
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Two cases occur in considering this product. In the
first case, k(x, ¥) is a function of y alone. When this is the
case we say the x and y variates are uncorrelated and
&{x, ¥) is simply the product of a function of x only multi-
plied by a function of y only. In such a case the proba-,
bility that a variate y will be between y and y+dy is the.;
same whether the corresponding assigned s be large.or
small. In the second case k(x, y) is a function of beth =
and v. In such cases, the probability that a variate y wili
be between y and y+dy is not, in general, ‘the same for
corresponding assigned large and small\ yalues of . In
such cases the two systems of varjigtes are said to be
correlated. Thus, in considering fdr/example a group of
college students, the height'pf'“ai student is probably
uncorrelated with the grad&t¥redhakdibiiinmarhematics
or with the income of hi§ father, but his height is cor-
related with his weight, and with the height of his father.

Both the reg;gsa‘ion method and the correlation sur-
face method of dealing with correlation have been in
evidence almgst from the earliest contributions to the sub-
ject. Thiéarly method of Francis Galton was essentially
the rqgr‘éséion method, but the mathematical solution of
th;\%’giéf:ial problem® which he proposed to J. D. Hamilton
Dja&son in 1886 consisted in giving the equation of the

:\'"ﬁénnal frequency surface to correspond to given lines of

" regression. The solution of this problem thus involved

the correlation surface method. Furthermore, the early
contributions of Karl Pearson to correlation theory, in-
volving the influence of selection, stressed frequency sur-
faces® more than regression equations. But, beginning
with a paper® by G. Udny Yule in 1897, the theory has
been developed without limitation te a particular type of
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frequency surface. It is a fact of some interest that Yule
returned very closely to the primary ideas of Gulton, by
placing the emphasis on the lines of regression. Moreover,
the success of the regression method of approach should
give us an insight into the simplicity and fundamental
character of Galton's original ideas. ¢(\)

29. The correlation coefficient. The degree of co;rela-
tion is often measured by the Pearsonian coeffitfent of
correlation represented by the letter 7. Cons{dér N pairs
of variates (x;, v), i=1, 2,...., N, sich as are de-
scribed above, and let (%, #) represent the corresponding
arithmetic means of s and ¥’s. Tl:@a

@{Nii () 1: {VZ -xﬁ] ,
”’=[§?§.@i—y)] l\,Zy yJ

are the sta.ndé&&dewations of the two series.
Assumingthat at least two of the #'s are uncqual so
that o.300we let any variate which is denoted by #; in
ongma\kumts {yards, miles, pounds, dollars) be denoted
by. &, when measured from the mean & with the standard

~de\1at10n oy a3 a unit. Similarly, let the value > 3; be
N ‘denoted by v; when measured from the mean ¥ with oy as

a unit. That is,
xe=(m—%/o., Y=~ 0.

'I:hen in terms of »' and ¥}, the correlation cocflicient is
given by the simple formula

X
15%
(2) f=}‘v Xi¥i .
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That is, the correlation coefficicat of two sets of vari-
ales, expressed with their respective standard deviations
as units, may be defined as the arithmetic mean of the
products of deviations of corresponding valucs from their
respective arithmetic means.

We have defined the correlation coefficient 7 for, &)
sample. The expected value of the right-hand membériof

(2) in the sampled population is then the correlrgéibgz co-
efficient for the population. D

While the formula (2) is very useful for thf@urpose of
giving the meaning of the correlation cepfficient, other
formulas casily obtained from (2) areafsudlly much better

adapted to numerical computatign, For example,

1 . wta;w_zlbl'aulibral'y_or n
NZ -xi}-‘-—xj},’}; \ g .

- s
)
Ty N3 ©°

® e

:..,‘\ 1+ -
¢ '\‘.,; N x¥i— Xy
@ r=¥q 72 172
N2 1 .
x'\‘
are _grelinarily more convenicnt than (2) for purposes of
cémputation.

83" When W is small, say < 30, formula (4) is readily ap-

N
<

' plied, When N is large, appropriate forms for the calcula-

tion of # are available in various books.

Still other forms for expressing » are useful for certain
purposes. For example, for the purpose of showing that
—1=rgl, we shall now give two further formulas
for r.

By simple algebraic verification and remembering that

N
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T=3"x?/N=" %N, it follows that (2) may be written
in the forms#

®) r=1—55 5" (s yiy?

(6) r=—1tgn S Gyl

From these two formulas, we have the important prop031-
tion that

) —1=r=1, ;~~..\‘

'\

THE REGRESSION METHOD OF DESECREPTION

30. Linear regression, Suppose w&{‘are interested in
the mean valuc #, of the ¥'s in the'w-array of 4's. The
simplest &h‘ﬁ“’rﬂééﬁ‘i%ﬁﬁi’b’aﬁ‘ﬁgdﬁse to consider from the
standpomt of the practical problems of statistics is that
in which the regression of ki an x is a straight line. Aseum-
mg that the regressiopseurve of y on x in the population
is a straight line, w&a)ecept as an approximation the linc

=mx+b whlch\ﬁts “best’ the means of arrays of the
sample

The temdt “best” is here used to mean best under a
least-squ&(cs criterion of approximation. In applying the
cnt;&bjn the square (5. —mx— b)? for each array is weight-

the number in the array. Let &, be the number

ofidots in any assigned x- array of y’s. Then the equation
*of our line of regression would be

(8) Fe=mu+b,

where m and b are to be determined by the condition that
the sum

(9) DN Ga—mx—B)
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with observed data substituted for #, 9; and N, from all
arrays, is to be a minimum, Differentiating (9} with re-
spect to b and », we have

{10 — 22 N.(5,—mx—b)=0,
(15 —2Y N (5. —mx—-b)x=0, O

We may note that N.§. is equal to the sum off all ¥ ’s in
an array of »’s. If we examine thesc cqua.tmnﬁ‘\n making
substitutions for 4, and =, it is easily seen tha,t they are,
exccpt for grouping errors which vamsil as"dx—~0, equiva-

lent to the equations O
(12) _22(y‘._m@%ﬂéjaf@,library,org,jn
(13) —ZE:A:‘-(}-;’;mxi—-b) =0,

where the summatxon\m extended to all the given pairs.
That is, we may\@\a the regression line by obtaining the
linear functioftyy =ma+5, which gives the best least-
sguare cstlma,te of the values of ¥ which correspond to
asswned \m,lues of x. Take the origin at the mean of x’s
and he mean of ’s. Then D>.y=0, > %=0. Hence,
from\(u), b=0. From (13)

Exxys Exey: . .U'_y=r Oy

Ex, Nogay, 0z Oz

and the equatioh of the line of regression of y on z is

(14) y=rﬁx.

Tz
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Similarly, the line of regression of x on v is

(15) s=rZty .

Ty
N
It should be remembered that the origin is at the mean
values of 2’s and of ¥’s when the regression equations t&i{ﬂ.'\‘
the forms (14) and (15). It is obvious that these 2e’ciﬁa-

tions may be written as N _
L
(16) y=3=r 2 -8 2O
and '.1\\':
o, D\
(17 x—£=r6 (y—:g';)w’
¥ No/

www . dbraulibrary .(org. i
when we take any arbitrarysarigin.

The coefficient ro,/afls called the regression coeffi-
cient of y on x, and sitilarly ro./ay is the regression co-
efficient of  on 3.¢~

If we use stahderd deviations as units of measureraent
the regression gquations (14) and (15} become

A\
(18) \~ Y=y, 2=ry,
A&

ap\d\\bh'é regression coefficients are equal to each other and

_to,the correlation coefficient.
\:\ " When there is no correlation between #'s and ¥'s, 7 =0,
N/ and the regression lines of y on x and of x on y are parallel
to the x- and y-axes, respectively. On the other hand,
when r=0, it is not necessarily true that there is no cor-
relation. Indeed, there may be a high correlation® with
non-linear regression when =0, For cxample, we may

have r=0 when yis a simple periodic function of 2.
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31. The standard deviation of arrays—mean square
error of estimate. In passing judgment on the degree of
precision to be expected in estimating the value of a vari-
able, say y, by means of the regression equation of y on «,
it is important to have a measure of the dispersion in
arrays of ¥'s. O)

The mean square error s} involved in taking tl;elio‘rdil
nates of the line of regression as the estimatedgralles of
y may be very simply expressed by s3=o3.(I=72). To
prove that s} takes this value, we may w¥ite'the sum of

the squares of deviations in the form O
.'\ o

2 e, '
Nii= —r X ) = '2—23'— xytr2 2 Z o
¢ z (y L] ¥ \?W’\\! H hea ar“‘;i- or g .
=No}—2Nro}+ N fim =Nol(1—13) .

oS

Hence, we have N\

(19) NS sE=di{l-rY)
&

(20) X \ sy=a,(1—)V2

This ‘v\aiue of 5, may be regarded as a sort of average
value.6f the standard deviations of the arrays of 4’s, and
ig i)metlmcs called the root-mean-square error of estimate
af ¥, or more briefly, the standard error of estimate of y.
L The factor (1—#22 in (20) has been called the coefficient
of alienation or the measure of the failure to improve the
estimate of y from knowledge of the correlation.

When the standard deviation of an array of ¥’s is re-
garded as a function, say S(x), of the assigned x, the curve
y=S(x)/e, is called the scedasiic curve. It may be de-
scribed as the curve whose ordinates measure the scatter

7 &

y,
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in arrays of ¥’s in comparison to the scatter of afl ¥’s.
When S{x) is a constant, the regression system of ¥ on x
is called a komoscedastic system. When S(x) is not con-
stant, the system is said to be heteroscedastic. For 5 homo: ¢
scedastic system with linear regression, .s,— oy(1 512 s
the standard deviation of each array of 's. L 2

To illustrate (20) numerically, let us suppogés That
r=.5 gives the correlation of statures of fathet;gsand BOIS,
Assuming linear regression, the root-meanésquare crror
of estimate of the height of a son derived/from the as-
signed height of the father would be \)

=TSV sa?a,

www . dbraulibrary .o

That is, the average dlspersz%n in the arrays of heights of
sons which correspond tolAssigned heights of fathers is
about .87 as great as the dispersion of the heights of all
the sons. It is, th fore fairly obvious that we cannot,
with any conslder able degree of reliability, predict from
r=.5 the he;g\ht of an individual son from the height of
the fathery However, with a large N, we can give a very
reliablé prédiction of the mean heights of sons that corre-
spandito assigned heights of fathers.

It should be remembered that we have thus far as-

R\ Ofsumed linear regression of y on x. An analogous consider-
) ation of the dispersion in arrays of 4’s gives for the mean

square error of estimate
st=o2(1—r%)

when we assume linear regression of x on .
32. Non-linear regression—the correlation ratio. In
case a curve of regression, say of y on #, is not a straight
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line, the correlation cocfficient as a measure of correlation

may be misleading. In introducing a correlation ratio,

Wy Of ¥ O % as an appropriate measure of correlation

to take the place of the correlation coefficient in such a

situation, we may get suggestions as to what is appropri-

ate by solving for #? in (19). This gives O\
NS ©

2 &

{21) P=1-—-si/od, A
N

where we may recall that s; is the mean square\of devia-
tions from the line of regression. Then

r=(1—s/aPV? D
This formula could be usgg_{@;gﬁgpﬁrﬂ%}%l 1, 35 ga.l%eﬁni-
tion of 7 in place of our definitiort in (2), and its examina-
tien may throw further hg‘hf on the significance of r.
When 5,=0, the formula gives r =1 and, as we have seen
earlier, all the dots Qf\’the scatter-diagram must then fall
exactly on thelm\ of. tegression y=royt/0s. When s,=0,,
the formula gives ¥ =0, and the regression line is in this
case of ng au:t in predicting the value of y from as-
signed va{u;es of %. In the formula r2=1—s}/0} it is im-
portagtyt6 keep in mind that the mean square deviation
55 4 sﬁ}om the line of regression (§31). Next, let s3* be
'the corresponding mean square of deviations from the
~Caheans of arrays. Then in the population s =s; when
N the regression is strictly linear, but sy’#s; when the
regression is non-linear. This fact suggests the use of a
formula closely related to [L—s3/03]"? for a measure of
non-lincar regression by replacing syby sy. We then write

(22) w=1—s/o}
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where 7,. is the correlation ratio of y on x, and s* is the
mean square of deviations from the mcans of arrays
whether these means are near to or far from the line
of regression. For linear regression of ¥ on 2, we have
7e=7" in the population, A

In general, we may say that the correlation ratip.\b}".\
y on x is a measure of the clustering of dots of the scatter-

diagram about the means of arrays of ¥'s. S0
An analogous discussion for the atrays of '8 dbviously
leads to \%

5

' w\/
wy=1—s/ot, )

giving 7.y, the correlation ratio of 2 on .

Thatv#gydtravdbriae ateiegiality holds only when
all the dots in each arrayedie at the mean of the array
follows at once from (220"

That 52, =2 may Qe shown by recalling the meanings of
s2in (21) and of sf2Jn (22). A mean square of deviations
in each array is&ninimum when the deviations are taken
from the medw’of the array. Hence, the sj? in (22} must
be equal t{;»\or less than &2 in (21) for the same data, since
the devidtions in (21) are measured from the line of re-
gr\e%ibn. Hence, we have shown that

ES T
V i
Moreover, when the regression of y on x is linear, ns—7°
found from the sample differs from zero by an amount
not greater than the fluctuations due to random sampling.
Indeed, the comparison of the quantity nl,—2 with its
sampling errors becomes the most useful known criterion
for testing the linearity of the regression of y on #.
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Tor some purposes, it is convenient to express the
correlation ratios in a form involving the standard devia-
tion of the means of arrays. For this purpose, let 9, be
the mcan of any array of ¥'s, and g3, the standard devia-
tion of the means of arrays when the square (§:—7)* of

each deviation is weighted with the number ¥, in t]lE\ )

array. Then it follows very simply that O
g »

f23 r = ﬁ_sv =_HE . 'w’ ¢

23) e = ) = ¢ \

That is, the correlation ratio of ¥ on i9'the ratio of the
standard deviation of the means of"a:rrays of 4's to the
standard deviation of all 37s.., 4, . c[brauhbrar_y org.in

The calculation of the cotrelation ratio with a large
number N of pairs may be ca:rned out very conveniently
as a mere extension of the calculation of the correlation
coefficient. For a forth for such calculation, see Handbook

L)
of M athematical \ziq-tistics, page 130.

In order tohget a fair approximation to a correlation
ratio in a pépulation from a sample, it is important that
the grouping into class intervals be not so narrow as to
givenditays containing very fow variates. Certain valu-
a.ble\formulab for the correction of errors due to grouping

'.haxe been published.?

" When the regression is non-linear, the correlation may

be further characterized by the equation of a curve of
regression that passes approximately through the means
of arrays of a given system of variates. As early as 1905,
the parameters of the special regression curves given by
polynomials y=/(x) of the second and third degrees were
determined in terms of power moments and product



~

\

02 CORRELATION

moments. In 1921, Karl Pearson® published a general
method of determining sucecessive terms of the regression
curve of the form

(24} y=flx)=awrtafnt -+« +anta,

¢\
where a9, @1, . . . ., @, ate constants to be deicrmimed ©

and the functions ¥, form an orthogonal system o,f‘jf:y}ic-
tions of x. That is, e \ e
0
TNt} =0, ’
Ko
if the summatjon 3, be taken for all valies of x correspond-
ir-Lg to a system af b%_g{%}_rgr_g%]tlh ifegliency in an x-array
giver by N, An cxpodition oftthe theory of non-linear
regression curves is somewhi$ beyond the scope of this
monograph. N\

33. Multiple correfation. Thus far we have considered
only simple corrglation, that is, correlation between two
variables. But‘s\i’@ati{ms frequently arise which call for
the investigation of correlation among three or more vari-
ables, A famiiliar example occurs in the correlation of a
charagt@i‘.\guch as stature in man with statures of each
of tliblt\gvo parents, of each of the four grandparents, and

pds;sibly with staturcs of others back in the ancestral line.

("Other examples can be readily cited. Indeed, it is very

X
4

generally true that several variables enter into many prob-
lems of biology, economics, psychology, and education.

The solution of these problems calls for a development
of correlation among three or more variables. Suppose we
have given IV sets of corresponding values of » variables
X1, %2 . . ., %y Assume next that we separate the val-

N

N
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ues of x; into classes by selecting class intervals dx,, das,
..., @z, 0f the remaining variables, When we limit the
25’3 to an assigned interval da,, a3's to an assigned interval
das, and so on, the set of corresponding x,’s is sometimes |
called an array of o's.

The locus of the means of such arrays of #/’s in he,
theoretical distribution, as dx, dxs, . . . ., dv. appfoach
zero, is called the regression surface of x, on the remuining
variables. It will be convenient to assume thatany vari-
able, ), is measured from the arithmeti¢ 'ﬁi}an of its N
given values as an origin. Let ¢; be thedtandard devia-
tion of the N values of x5, and let #fBé the correlation
coeflicient of the N given pairg df,\'alues of %, and a,.
Then we scek to determine big, buay . . . . , bia, ¢, the para-

. . - ww dbraulibrary org.in
meters in the linear regression sul%g.ce,

(25) x1=bmx2‘j‘5isx;+ sov s bt

g
of 2, on the refnining variables so that z; computed from
{25) will give on the whole the “best” estimates of the
values of(#; that correspond to any assigned values of
X3, Xapo, ., %, Adopting a least-squares criterion, we
mQ"}*l:étermine the coefficients in {25) so that

N86)  U=3 (n—bum—buxs— - -+ - —binta—0)?
shall be a minimum. This gives for the linear regression
surface of x, oD X, X3, + - - - 5 X,
g=n
R1q o

(27) =—m T
a=
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where R,, is the cofactor of the pth row and the gth
column of the determinant

1 iz F12 4 e o« Fia
¥n 1 Fas o w o v Fag A
O
(28) R= a1 o 1 .... & ’\“\
.”\\ o
£
: « N/
ol Tmg we==a 1 ™

For simplicity we shall limit ourselves tﬁ"}}\:3 in giv-
ing proofs of these statements, but the wiethod can be
extended in a fairly obvious manne;;{f@yﬁl three variables
to any number of variables. NS

Equetingiodiboatheofmst derivatives of U in (26}
with respect to ¢, b, and by ‘we obtain, when 7 =3, the
equations N

N
.3

c=0,
A
— 22}2(:\,1—— Diada — blaﬁ'ﬁ) =0.

AN w31~ Brare—bpry) =0,
The las’t\:c:jvfo) equations may be written in the form

AN\

’\\m; 2171X3—'I)]2Ex%_5132x2x3=0 y
Zx1:€3— mexa:\‘s - blazﬂ'-g =0.

A
Y
v . .

By expressing the summations in terms of standard de-

viations and correlation coefficients, we have
(29) 1\"‘51203—}-3'1-513?'23020'3=N?‘120'10‘2 y

(30) me?’g;;a'zﬂ‘s +.17\; bmdg = A'T?']:;O'] oy .
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Solving for by, and by, we obtain

. ¥iz Tz Fla ¥
3 0’10'203 13 i a1 i3 1
12 = T ==
O"%O’g i taz ag 1 g | ? 3\
A o
rg 1 s 1 e\
,”5\ 2
1 12 1 \'
l’\"
_ 1] fiz T "j%} ‘
3= &
[F] 1 LE] \&
“\\'
¥aa 1 \\
. ) \Y;
£NCe ¢ &/
o \\
= —a Ea\rw—lﬂéiapllbral y.org.in
u Gy

where R, is the cofactor‘,oiithe #throw and gth column of

¢ "x\ 1 iz T
¢\
R \\R = ¥ 1 Tag
5 \® a1 T 1

\)

Tt t}'fb dlspersion (scatter) oz . ... » Of the ohscrved
va ﬁés'of a1 from its correspondlng computed values on
thé\ vperplarne (27) is defined as the square root of mean

'\Square of the deviations, that is,

(31)  olu....n 211\7 2 (observed x; — computed %)%,

then it can be proved that

(32) o1 .. . a=ai(RjRn)VE,
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To prove this for #=3, we may write from (27} and (31}

X

g N2
2 01 z I *2 ¥3
Nﬂl.za—R,‘l,l (Rn ﬂrl'f'Rlsz U_Z‘I—Rm 0_3)

2 L
= 'a_;N (R§1+R¥2+R§s+ 2R Ryprie+ 2R Ryria+ 2R12R13?’23')\“.\
N

1
« \/
“~3

2 N " £ :
=cr1_2 [Ru(Ru—troRu+r1aRi) + Ru (Rt rieRuPrealy)

11 ~

+ Ria( R+ 1Rl +72sRae)] -
N ‘
Since from elementary theorems of. gié&ét‘minants,

wwrw dbrAt ﬂ'r"élﬂ’§1&ﬂ‘gf m&s? R,
RI2+?'12R11:}'~f;‘:{R13=0 s
R18+713R1;;F;23R12=0 ’

y ,‘\
we have \\

(33) ‘Tf.?'a“%”‘f? R/Ry, o1 =a(R/Ru)/2.
N/

Aga@}xtension of the standard error of estimate with
tw?Qtaﬁables (p. 87), it is true for # variables that the
standard error o1 . . . ., of estimating x, from assigned

”\iiyfilues of %, 2, ... ., x, is the standard deviation of

.+ each array of x,’s, provided all regressions are linear and
the standard deviation of an array of x;'s Is the same for
all sets of assignments of x,, Xy 0u .., Ap

Next, we shall inquire into the dispersion of the esti-
mated values given by (27). Since the mean value of these
estimates is zcro, when the origin is at the mean of each
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system of variates, we have the standard devintion o o
the estimates of x; given by

P R ¥
a _ng Iy R13 Ty [EXSPENG 2 a1
0¥E=E& E (___, RN gt ) =.— (R, Ri, 2R GR 0

Ry o -K:; oyl R
e\
5 N /3
—o o of R\ N\
=¥ PR Rt ALTLeTE =gy 1— -1, AN
RII [ IERU ! |.\ 1.-\;”!,1 Q‘x j>
' 4 ‘s‘
\ ¢
The correlation cocificient ryp ., l:[-tqua‘w oh

calculated from the Hnear function (27 (:&\.}3, Fae. L, Xn
s called the mudtiple corretation c,':rjgf:'gji@&f’ ol order 7 —1
of 2, with the other - 1 varfabl. s, AW vialtiple corrla-
tion coefficient ry0 . , i3 t=xvp\?@’_§1bf@‘ﬂibtﬁ‘i¥1g?'(ﬁ'%‘?r1-.; e
correlation coefficients by the f&rmula

S N

(34 s T RIRG V2

served values of x; anvi its correspoiding el ':“&}wl viddues

O
To prove (34). Ilmit'{gg}mlrscl\f(-s to =3, we write

Na'la'm("r‘ﬁ' S NS { Rapx Ry -\‘3")
ap=gi > L SRIRAREIEY:
A/

O\ A 1!\)[1 & _[\][1 T,
x:\wl \' .
v ~st, \
\{;} === {(Rpry FRuGmg)
Q& N
” ‘?1:‘ — N _ B
Q> =_j\;1[_l LR_R“J:'\’GI“"R. My

ince

oiE=a[1 - R’R, |- .

we have the result soughr,

ra=[1— }{f-’]\’__,_]l& .
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The relation (34) is very significant because it enables us
to express multiple correlation cocfficients in terms of sim-
ple correlation cocifficients.

From equations (32) and (34), it follows that
(35) Uf.za....nmﬁf(l—f%.zn....n)- ’,\:\

24, Partial correlation. It isoften important to olg’min’
the degree of correlation between two variibles xdand 2
when the other variables s, Ty v, Ky hz-;.\{eta.ssfigned
values. For example, we might find theedsrélation of
statures of fathers and sons when the stapure’of the moth-
er is an assigned constant, say 62 :inc'hfe&\:In general, sup-
pose we have found a correlation Aetween characters A
and B, and that it is a plausibl¢ Witerpretation that the
correlafinn s iorad, iscuecto the correlation of each
of them with a character CxIn this case we could remove
the influence of C, if wef};}a.d a sufficient amount of data,
by restricting our dafa. to a universe of A and B corre-
sponding te an ag,g@ﬁed C.

In accord With this notion, we may define a parfial
correlation caefficient v'ingy . .. » Of % and x, for agsigned
*3, Xuy « WG/, ika, as the correlation coefficient of 2, and
¥z in the'part of the population for which a3, 24, . . . .,
En \@?é’assigned values. A change in the sclection of as-
signed values may lead to the same or to different values

) \Of 71941, R

.
Y

Suppose we are dealing with a population for which
the regression curves are straight lines and the regression
surfaces are planes, Thus, let us assume that the theo-

retical mean or expected values of 2; and #; for an as-
signed «3, 25, . , . . , X are

vt byt - . - 4 B1an 4
b23x8+bz4x4+ e +b2nxn '
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respectively, Then a partial correlation coefficient

1231 . . . .18 the simple correlation coefficient of residuals
Tis .. a=x1—bury—byxg— - o - —biaks
and A o
oA\
= NS
ez, ... =Xy Doatn— bayxy— - - - - ——bg,.x,, « \J
<§o""
limited to the part of the population Ngs o'Orn of 1he
total & for which a3, x4, . . . . , ¥, are fixedy
Suppose further that the populatiogdis such that any
change in the assignment of values Wxs, x5 . ..., 2,

does not change the standard d&?\}i‘ation of mas. .. .,
nor of #35,....,, nor the Gﬁﬁ?ﬁ.‘fiﬁ"?mllgl_ar_a_l ‘y_'(f.g'g{lch i
population suggests that weldeline

<

v,'~ .
. Z-T]_s-: % I
{36) Tiom ... ainNTT '
M\ A‘Gl,n-l L..omtass g
¢ \J
N

where the subamation is cxtended to & puirs of residuals,
88 the pariial correlation coefficient of x; and x; for all sets

of asslxg,alrﬁcnts of xsay, .., 2,
I;tha population is such that ¥’ .. . is not the
SgMe for each different set of assignments of xs, %5, . . . ., x.,

‘"\.f'the right-hand member ‘of (36) may still be regarded as

"« \¥/

\‘:

& sort of average value of the correlation coefficients
of 21 and &, in subdivisions of a population obtained by
assigning o «,, . . . . » %a, OT it may be regarded as the
corrclation coefficient between the deviations of %, and
%, from the corresponding predicted values given by their
linear regression equations on &g, &y, . . . . X,

The partial correlation coeflicient as given in (36} is



100 CORRELATION

expressible in terms of simple correlation coefficients by

the formula

. —Rn
(37) fﬂ.ﬂ‘...n—W’
where R,, is a cofactor defined in §33. P O
We may prove (37), limiting ourselves to #=23, as iollowlx\ y
By definition A\
o ’“0&'\."’
le 3 %23 _ Z (-‘51—?'13 ;; x;,-) (xa"fﬁ&.;; xx)
r
= Ndlaﬂ‘as Na'l.ad'z.:sv\\.;

x]

ok

0'10': 4
M%z\mﬁdbra néiay‘d’x,gm xzit'a—l‘?'is?'m o é ¥
i
- ot \2 ,,’~’ e N2 ju2
_Z Xy ¥y = A ’E. Xg— ¥z — &3
L] “" L)

SN g
.3

= it "'\"1’;3?'23 - Ry
[(lc\(i*e)% 1—-#)]V?  [RuRx]V?

Thus, (37) 4 is p;dved for n=3.
An Imgortant relation between partial and multiple
correiam)n coefficients may now be derived. From (37)

N 2

& 192 _ RuRe- Ry

» Tz .. a5 5 .
BB

By a well-known theorem of determinants,®

’ Ry Ry

=RyRes— Rl = .
Re Ry 1nfee—Riz=RRy o
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ITence we have

R
1_’_%234 RRuz‘a Ru =1“f§_23.,. n
Hoa® R“Rﬂ? Ro 1—?’%34.,..,.,
Ru=
sirce from (32) and (35), )
'S\
R . N\
=1=r 8!
R 128 . ..np O\
m\\’
and similarly v
R ) \\“
R
1122 LaTrATS dbrauhbl ary.org.in

Thus we can express tl}ef‘partial correlation coefficient

Fiss. ... of order nij;';tthe number of variables heid
coustant) in terms gf*the multiple correlation coeflicient
7125 ... of ordep#—1 and the multiple correlation co-

efficient #13,, \\,. of order n—2.

35. Nondimear regression in n variables—multiple
correlatlmxrat:o. The theory of correlation for non-linear
r{,gressibn lends itself to extension to the case of more
thad.two variables as has been demonstrated by the con-
tﬁ'\ltions of L. Isserlis® and Kail Pearson.®

g\ »" Consider the variables 1, , . . . . , %», and fix atten-

tion on an array of x’s which corresponds to assigned
values of xy, %, . . . ., ¥a. Next, let 1o ... be the
mean of the values in the array of 2y's and let 1. . . .»
be the standard deviation of these means of arrays of x’s.
where the square of each deviation Zi. ... from the
mean of x,’s is weighted with the number in the array in
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finding this standard deviation. Then the multipie cor-

relation ratio muas....c0f 2 00 Xy, a5, . . . ., 3 may be
defined by
Gt
38) M., a=TBn A
J o\

"N\
N

The analogy with the case of the correlation €atip for
two variables seems fairly obvious, While the; method of
computing the multiple correlation ratiogde:....n is
simple in principle, it is unfortunately Iab@nous frcm the
arithmetic standpoint. R

36. Remarks on the place of probability in the regres-
sion methpdwfﬁhﬁ,fa;rmeyl&ggjdxscussed simple correla-
tion by the regression methqd ‘without using probabilities
in explicit form. To bejstre, probability theory is in-
volved in the background It seems fairly obvious that
it would be of fnnﬁamental interest to comstruct urn
schemata which #ould give a meaning to the correlation
and regressioh, coefficients in pure chance. In a paper*
published, by; the author in 1920, certain urn schemata
were de\(iséd which give linear regression and very simple
valuesfor the correlation coefficient. Other schemata ap-
paréntly equally simple give non-linear regression. The

. \general plan of the schemata. consists in requiring certain
"\ elements to be common in successive random drawings.
It appears that the construction of such urn schemata
will tend to give correlation a place in the elementary
theory of probability,

In a recent book® by the Russian mathematician,
A. A. Tschuprow, an important step has been taken to-
ward connecting the regression method of dealing with
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correlation more closely with the theory of probability.
This is accomplished by a consideration of the under-

lying definitions and concepts for a priori distribu-
tions,

It may be noted that we have not based our develop-
ment cf the regression method on a precise deﬁnitiop\:q(
correlation. Instead we have attempted a sort of geneti¢
development. It may at this point be helpful i;L,f;g}’ming
a proper noticn of the scope and limitations gfjt}le regres-
sion method to give a definition of correlation¥rom the re-
gression viewpoint, It seems that a gencral Hefinition will
involve probabilities because we she}ll\élﬁlost surely wish
to idealize actual distributions intgtheoretical distribu-
tions or laws of frequency for-petpbssatefidefimition. In a
general sense, we may say. thdt y is correlated with «
whenever the theoretical.'d'if;tfibutions in arrays of s are
not identical for all possible assigned values of #, and we
say that v is uncorrelated with « whenever the theoretical
distributions in afrays of ¥’s are identical with each other
for all possib}e\ﬁlucs of x. By the identity of the theo-
retical disgijbittions in arrays of y’s, we mean that they
have eqtalmeans, standard deviations, and other par-
ame'tqr%fequired to characterize completely the distribu-
tio‘\n'sr ‘It is fairly obvious that our discussion of the re-

«&ression method is incomplete in a sense because we have

() ot given a complete characterization of distributions in

arrays. Our characterization of the statistical depend-
ence of ¥ on x may be regarded a§ complete when the
arrays of ¥’s are normal distributions, because the dis-
tributions are then completely characterized by their
arithmetic means and standard deviations.

QY



104 CORRELATION

THE CORRELATION SURFACE METHOD OF DESCRINIION
37. The normal correlation surfaces. The function

z=_f(3:1, X2y v ny xﬂ)

is called a frequency funciion of the n variables, x,. 2, . . , %,
if ' L\
gdrr dxy o .. . DX, :\ .
gives, to within infinitesimals of higher crder, the pmba-
bility that a set of values of u), a, . . . ., 2l dken at

random will Le in the infinitesimal regionBéunclcd by =

and xi-tdw, 2 and w4da, .. L. oamand a;+-da,.
When the variables are not independéit in the proba-
bility sense, the surface represented by g=f(x, o, .., )

is called . coragadiatoswrfaseg.in, ™

With the notation of § 29~ Jor simple correlation, the
natural extension of the theory underlying the ﬂormal
frequency function of .one variable to functions of two
variables x and y leg.cfs to the correlation surface

\\1 e 2(1_";) xﬂ ;; i(?) .
2ma (=72
A\

Mm;ecivcr with the notation of § 33 on multiple corre-
lation(th€ natural extension to the case of a function of #
nox“ﬁklly correlated variables xi, s, . . . ., , gives a
frpquency function of the exponential type

5=1zy g‘*id‘

where ¢ is a homogencous quadratic function of the #
variables which may be written in the form -

2
o= R(R“ 1+R22§§+'--—+2Ruﬁ£“+ )



NORMAL (ORREE WD

the determinant & ol 1 o0

7 " - Py | .
defined in § 33, We ths N

space of 7+ 1 dimenzinns,
For purposes of simjpll

tions of norm:l fm[l'vnr\ TR

and three veriables thus veerrie e

to space of three and four i i ‘:5\

The equation of the vere o0 N
derived from various sctsof v 0 0 >
extensions of suts of AR \"‘\&
frequency curve miay Tl ' e \\\
tions make no explicit s i o0 O3
correlation the regression [« . s
gression is consiilercd ux o LA db:;auhbrary org.in
face obtained from oihier siews ‘:‘ B P
nect the frequency-surr, no;x.
gression methaod by unulnr LT
the variables on the 0! "T\h RS "
which to derjve 1\ Aurieces T g
adopt in the I&I] m il co
that one ce{t»ssir varliates, ooy o
normally about their mean o1

\

l“hcnu{ Fnotation ip, 47 0.0 8 1y

e
‘9/'/

/i
7

7

»
3
1
v

Y
<

O
<> to within infinitesiing s of
that an » taken
Assume Rext that anv arpgy o
assigned g ig a4 Nornn;| _
deviation of AN Arrisy oy,
in this chapter (§ 31)

at random o

il.].\'_ Pl
1
E R S 3

i



104 CORRELATION

THE CORRELATION SURFACE METHOD OF DESCRIPTION
37. The normal correlation surfaces. The function

Z=f(x_1, Xy o va oy x,,)
is called a frequency funciion of the n variables, k1., . . s Fny
if ’ ¢\
2dx, dxy . .. . dag O

N/

gives, to within infinitesimals of higher order, lhc pmha-
hility that a set of values of X1, Xay oo ,A Yaken at
random will lie in the infinitesimal region bownded by 1y
and w-+dxy, % and xtda, .. oo and x,4-dz,.
When the variables are not mdeperbdént in the proba-
b111ty sense, the surface represcntedby g=f{x, o0, . . , 2.
is called & ooy leladibsurinceg, n)

With the notation of § 29 for simple correlation, the
natural extension of thq’theory underlying the normal
frequency function offenc variable to functions of two
variables # and v leaﬁs to the corrclation surface

(i"' » 2rx_v)
z:-;_‘r-._—a e 2{1 — gl U’ Gz @y

ébver with the notation of § 33 on multiple corre-
lati \the natural extension to the case of a function of #
m}z:mally correlated variables xy, «, . ..., %, gives
”\:"\fmquency function of the exponential type
N / 2= ek s
where ¢ is a homogeneous quadratic function of the #
variables which may be written in the form '

1 = B o
=_(R . 1 A2
¢‘—R( 11 ‘—12+Rn r.r§+ +2R12 - —+ ) :
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the determinant R and its colfactors Ky and Ry, being
defined in § 33, We thus have a correlation surface in
space of #-+1 dimensions.

For purposes of simplicity we shall limit our derivad
tions of normal frequency functions to functions of &wo
and three variables thus restricting the geometry inys (}I‘ved
to space of three and four dimensions. Oy

The equation of the normal frequency sur,f'a,ce may be
derived from various scts of assumptions andlégous to and
extensions of sets of assumptions fromsghich the normal
frequency curve may be derived., Sgme of these deriva-
tions make no explicit use of tbwé':‘fact that in normal
corrclation the regression is Jigear. That is, linear re-
gression is considered as Wopggg&%;g&fg}%qgn Cy sur-
face cbtained from othenassumptlons But we may con-
nect the frequency- surfacc method closely with the re-
gression method by~involving lincar regression of one of
the variables onthe others as one of the assumptions from
which to deﬁQ‘e the surface. This is the plan we shall
adopt in tHe following derivation. Let us assume, first,
that on& et of variates, say the «’s, are distributed
normfally about their mean value taken as an orgin.

'RQE;h‘in our notation (p. 47 and § 29)

. (21)"’2 ¢ iz,

to within infinitesimals of higher order, is the probability
that an x taken at random will lie in the interval dx.
Assume next that any array of ¥’s corresponding to an
assigned 2 is a normal distribution with the standard
deviation of an array given by ¢,(1 —#9)¥? as found earlicr
in this chapter (§ 31}, and finally, assume that the re-
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gression of 4 on zis linear. Then in the notation of siznple

correlation
1 (y—rg’- ) 2
o/ dy

(40)

is, to within infinitesimals of higher order, the probability{ \

that a y taken at random from an assigned array of y*s
will lie in the interval dy. A

By using the elementary principle that the p;oiba ity
that both of two events will occur is equal tothe’product
of the probabilities that the first will oca\l\and that the
second will occur when the first is knownédhave occurred,
we have the product z dxdy of (39) and40) for the proba-
bility, to withinsinfnitssimals-of figher order, that x will
fall in dx and the correspond@gg’;jf in dy, where

~

x’ y“ Drxy

1 3
o € Tea- ”}( R

(41) z=21rar,a'ﬁ.(1 :—.z{{)l/

is the normal corrah\tion surface in three dimensions.

Let us turz next to the derivation of the normal corre-
lation surfage in four dimensions. Following the notation
of multlplecorrela.tmn we seek a normal frequency func-
tion £\

‘ \ 3=f(x1, X3, xs) .
N\ '

) We shall assume first ‘that pairs of the variates, say
of #’s and x,’s, are normally distributed. Then by what
has just been demonstrated about the form of the correla-
tion surface in three dimensions, the expression

1 -
) At T e ) dnds

N



~O a9)
4

NORMAL CORRELATION SURFACES 107

is, to within infinitesimals of higher order, the probability
that a point {(x3, ;) taken at random lies within the area
dxsds. We next assume that the regression of x, on 2 and
a3 is linear, and that cach array of ay’s corresponding to ¢
an assigned (%, x3) is 2 normal distribution with standa.rd\~
deviation o\ N
1= (R/ Ry V2 P

given by (32). O *
Then in the notation of multiple correlatmh the prob-
ability that a variate taken at randomlh an assigned

(a2, x3)-array of 's will lie in da, is giveh“ to within infini-

tesimals of higher order, by \\
[ (Ry)V2 _Ru ( %&Lﬂ@%ﬁ& Ay ore: in
Ry "
(43 5
1/2 1 %
(Rll) 2RR ( +R19 +R13 O'a) dxl .

= (ZmK) 73 ¢

Then the pI‘Qh\blhty that a point (%1, %, xa) taken at
random w by lle in the volume dadaedxg is given, to within
mﬁmtesnnals of higher order, by the product of (42) and
* N\

(43), »{T his gives, alter some simplification, for the proba-
bility“in question, 5 dx,dx.dxs, where

) = 1 —ig
z_(21r)3/2R“2o'1crza's €7

and

1

X1¥2
¢= R(Rn S+ Ry 2+Rﬁ 03+2R12 o

+ 2RI 2R, "“’“") .
Gody
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38. Certain properties of normally correlated dis-
tributions. The equal-frequency curves obtained by mak-
ing s take constant values in equation (41) are an infinite
system of homothetic cllipses, any one of which has un
equation of the form

.\:\’
+y x ¥ =X2, N\ ©
G'_; Ty O‘: Fy ‘3 N/
The area of the ellipse is '”‘"\’\’.'
wAala, oy \
(1= e\

and the semiaxes are given by @ *k?& and b=2'\, where
Eand & YRS BRI aeSr 3;%.“ and 7. The probability
that a point (#,y) taken at ra,ndom will fall within any
ellipse obtained by assagmng Nis given by

P A
Az

(45) Zr}f::ff 1@ e N AN = 1 e HI
Attention, has often been called to the equal frequency
ellipse kimwn as the “probable” ellipse. The fprobadle
ells "fnav be defined as that ellipse of the system such
that™ he probahility is 1/2 that a point (x;) of the
'..\S:f;é’itter diagram (see Fig. 18, p. 109) lics within it. This
“\“ieans by (45) that

N

a2

TEI- o1
€ =z

. A=1.3863 (1—r%).
It

From (45) it follows that [\ /(1 —72)] ¢ 2= AX gives,

to within infinitesimals of higher order, the probability
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that a point (x,4) taken at random will fall in a small
ring obtained by taking valucs of X in A\,

We may determine the ellipse®® along which, for a
given small ring AX, we should expect more points (2,8
than along any other ellipse of the system. Fora constant

AM, the probabﬁll,ty is a maximum when A2=1—#2, Hence,
what may, Betalled the cllipse of maximum probability
is w7

2N .
7. +

&/ , cry T Ty

Y g

’\\‘“/

AN To illustrate the meaning of this ellipse, we may say

’o

that in Bertrand’s illustration of shooting a thousand
shots at a target, the probability is greater that a shot
will strike along this cllipse than along any other ellipse
of the system. It is an intcresting fact that-the ellipse
of maximum probability is identical with the orthogonal
projection of parabolic points of the correlation surface
on the plane of distribution. To prove this theorem, we



110 CORRELATION

simply find the locus of parabolic points on the surface
(41) by means of the well-known condition

&z g@ﬁ(aﬂz 2
dxt 3y \oxady/ °

This gives

2t 2 Irx N
el B I «
0: Oy G0y -\

7N
{ %

which establishes the theorom, ¢*O

By comparing M =1-7® with \*= 1.3863"‘6} —72), we
note that the probable ellipsc is larger thanMhe ellipse of
maximum probability. For the staturedof 1,078 husbands
and wives, the two ellipses just diseh&8ed are shown on the
scatter-diagram in Figure 18. By attual count from the
drawing (FIE” (473 lfu}:ﬁls'%ﬁjﬁ,g{fiat 536 of the 1,078 poinis
are within the probable ellipse and 412 are within the
ellipse of maximum probability. These numbers differ
from the theoretical %alues by amounts well within what
should be expecte@aé chance fluctuations.

Another interesting problem in connection with the
correlation ,gu'rfé.ce relates to the determination of the
locus alongwhich the frequency or density of points on
the planéof distribution (scatter-diagram) bears a simple
relation to the corresponding density under independence.

'}.‘]’ius, we seek the curve along which dots of the scatter-

2\ lagram are k times as frequent as they would be under

\

' independence where £ is a constant. Equating 5 in (41)

to & times the corresponding value of 5 when r=01n (41),

we obtain after slight simplification the hyperbola
(Fig. 18)

2 a2 : e
(46) G—j“l-j%_—g 2y _(—r) log (B2—F0r) ,

oy T 60, —¢°
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Karl Pearson dealt* with this curve for 2=1. That is,
he considered the locus along which the density of points
of the scatter-diagram is the same as it would have been
under independence. The fact that the density of dis-,
tribution at the centroid in (41) is 1/(1 —#2)¥? times as
much as it would be under independence naturally, gup-
gests the study of the locus of all points for (which
kE=1/(1—s5¥2 in (46). It turns out that in~this case
the hyperbola degenerates into straight iine\s .

= X — 1721\
¥ g [1x(1 "")x.'il:

R
These lines are shown as linesdB a{lg CD on Figure 18.
They separate the plane \B\f:‘éistf‘l yution Inia four com-
partments such that onefourth is the probability that a
pair of values (x,y} taken at random will give a point
falling into any p{éscribed one of these compartments.

Although nd further discussion of the properties of
normal corgeh}l'on surfaces will be attempted in this
monograplly.tertain properties analogous to those men-
tionegl:fo\r the surface in three dimensions would follow
rat}\ex}r.éadﬂy in the case of the surfaces in higher dimen-
\sims Thus the system of ellipsoids of equal frequencies

w\has been studied to some extent.®® In a paper by James
McMahon,* the connection between the geometry of the
hypersphere and the theory of normal frequency func-
tions of # variables is established by linearly transforming
the hyperellipsoids of equal frequency into a family of
hyperspherical surfaces, and by applying the formulas of
hyperspherical goniometry to obtain theorems in multiple
and partial correlations.
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39. Remarks on further methods of characterizing
correlation. In bringing to a conclusion our discussion of
corrclation, it may be of Interest to point out a few of the
limitations and omissions in our treatment, and to give
certain references that would facilitate [urther reading,

We have not even touched on the methods of delings
with correlation of characters which do not seem to 1 il
of exact measurement, but admit of classification; for
example, eye color, hair color, and tempcramcn{fmﬁ'y he
regarded as such characters. Such charactersj\a‘re some-
times called qualitative characters to distinguish them
from guantitative characters. The cogtelation between
two such characters has been dealt witlvin some cascs by
the method of tetrachoric® correlition, in other cascs by
the meth33’ 81°84 16@‘&%@&?‘%}'&1 by the method of cor-
relation in ranks® in cascs. whére the items are ordercd
but not measured. We hgxi’e‘ not touched on the methods
of dealing with correlation® in time serjes— 4 subject of
much importance'ip'ﬁle methodology of economic statis-
tics. The methéds,and theories of connection and con-
cordance of Gini* for dealing with correlation have been
omitted. Nodiscussion has been given of the fundamental
work of Bachelier’t on correlation theory in his treatinent
of cenfintious probabilitics of two or maore variables. Our
dis€ission of frequency surfaces in §37 is limited to normal

~gbrrelation surfaces. The way is, however, fairly clear for
“the extension® of the Grarn-Charlier system of representa-

tion to distributions of two or more variabics which are
not normally distributed.

While great difficulties have been encountcred in the
past thirty years in attempts to pass naturally {rom the
Pearson system of gencralized frequency curves to analo-
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gous surfaces for the characterization of the distribution
of two correlated variables, it is of considerable interest
“to remark that substantial progress has been made re-
cently on the solution of this problem by Narumi,® Pear-
son,® and Camp.® N
Although the many omissions make it fairly obvzous
that our discussion is not at all complete, it is hoped{ha.t
enough has been said about the theory of correlaﬁeﬂ to
indicate that this theory may be properly con&&ered as
constituting an extensive branch in the met\hedology of
science that should be further 1mproved\aﬁd extended.
'\\>
...\\'
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~ninatton of certain characteristics of a race of men. For

CHAPTER V
RANDOM SAMPLING FLUCTUATIONS

N

40. Introduction. In Chapter IT we have dealt to soz:éé\ K

extent with the effects of random sampling fluctuations
on relative frequencies. But it is fairly obvious.that the
interest of the statistician in the effects of sarfipling fluc-
tuations extends far beyond the fluctuationyin relative
frequencies. To illustrate, suppose we galculate any sta-
tistical measure such as an arithmétie mean, median,
standard deviagion, gesielation cefficient, or parameter
of a frequency function from théactual frequencies given
by a sample of data. If we, need then either to form 2
judgment as to the stabiﬁfﬂf of such results from sample
to sample or to use the results in drawing infcrences
about the sampled population, the common-sense process
of induction inydlyed is much aided by a knowledge of
the general order of magnitude of the sampling discrep-
ancies which’may reasonably be expected because of the
limited size’of the sample from which we have calculated
our statistical measures.

.\'%\5 may very easily illustrate the nature of the more
dommon problems of sampling by considering the deter-

example, suppose we wish to describe any character such
as height, weight, or other measurable attributes among
the white males age 30 in the race. We should almost
surely attempt merely to construct our science on the
basis of results obtained from the sample. Then the ques-

114
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extent with the effects of random sampling fluctuations
on relative frequencies. But it is fairly obvious tHat the
interest of the statistician in the effects of samplirg fluc-
tuations extends far beyond the fluctuationsin relative
frequencies. To illustrate, suppose we caleulate any sta-
tistical measure such as an arithmefic”mean, median,
standard deviagipn porrelasionicosflielent, or parameter
of a frequency function from the actual frequencics given
by a sample of data. If we .n’et;éd then either to form =
judgment as to the stabilityiof such results from sample
to sample or to use the results in drawing inferences
about the sampled pepulation, the common-sense process
of induction invél¥ed is much aided by a knowledge of
the general ordex of magnitude of the sampling discrep-
ancies which @ay reasonably be expected because of the
limited sizg\of the sample from which we have calculated
our s@fi‘cal Ineasures.
We'may very easily illustrate the nature of the more
cetiimon problems of sampling by considering the deter-
“\mination of certain characteristics of a race of men. For
Vexample, suppose we wish to describe any character such
as height, weight, or other measurable attributes among
the white males age 30 in the race. We should almost
surely attempt merely to construct our scienice on the
basis of results obtained from the sample. Then the ques-
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40. Introduction. In Chapter IT we have dealt to some, "
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tion ariscs: What is an adequate sample for a particular
purpose? The theory of sampling throws some light on
this question. The development of the elements of a the-
ory of sampling fluctuations in various averages, coeffi~
cients, and parameters is thus of fundamental importanoe
in regarding the results obtained from a sample as.8p-
proximate representatives of the results that wauld be
obtained if the whole indefinitely large popula’élon were
taken. RS
Omne of the difficult and practical gliestions involved
in making statistical inquiries by sataple relates to the
invention of satisfactory devices foprobtaining a random
sample at the source of mategal) A result obtained from
a sample unless taken with gre!:adtbcar% may diverge signifi-
cantly from the true Value ‘Haractenstic b the sampled
population. For example the writer had an experience
in attempting fo plck up a thousand ears of Indian comn
at random mthxespect to size of ears. It scon appeared
fairly obvigds™ that instinctively one tended to make
“runs” opreats of approximately the same size. The sam-
ple wolld probably not be taken at random when thus
dra’e\’n' Such systematic divergence from conditions nec-
eS3ary for obtaining a random sample is assumed to be
\\lmated before the results that follow from the theory

\3.' of random sampling fluctuations are applicable. In the

PR

O

practical applications of sampling theory, it is thus im-
portant to remember that the conditions for random
sampling at the source of data are not always easily ful-
filled. Imfact,it seems important in certain investigations
to devise special schemes for obtaining a random sample.
For example, we may sometimes improve the conditions
for drawing a random sample of individuals by the use
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of a hall or card bearing the number of each individual
of a much larger aggregate than the sample we propose
to measure and by then drawing the sample by lot from
such a collection of balls or cards after they have been
thoroughly mixed. Even with urn schemata containing,
white and black balls thoroughly mixed, it must be gk
sumed further that one kind of balls is not more slippery
than another if slippery balls evade being drawn. S he
appropriate devices for obtaining a random gample de-
pend almost entirely on the nature of thespanticular ficld
of inquiry, and we shall in the following.Q'Ls,tussion simply
assume that random samples can be drawn.

In an inquiry by sample, the following fundamental
question C%Efffd%?avﬁ?:{ Irl_a.%{all?f“about any result,. sa.y
a mean value %, to be o tgm,q *irom a sample of 5 indi-
viduals: What is the probability that z will deviate not
more numerically than an assigned positive number
from the corresponding unknown true value ¥ that would
be given by using\ﬁn unlimited supply of the material
from which theys variates are drawn? This question pre-
sents diffigulfies. An ideal answer is not available, but
valuablesestimates of the probability called for in this
question ‘may be made under certain conditions by a
procédure which involves finding the standard deviation

. .éf.’fandom sampling deviations.

"\ For the unknown true value % referred to above, con-

tinental European writers very generally usc the mathe-
matical expectation or the expected value of the variable
(cf. §6). In what follows, we shall to some extent adopt
this practice and shall find it convenient to assumc the

following propositions without taking the space to demon-
strate them:
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I, The cxpected value E [x—E(x)] of deviations of a
variable from its cxpected value E(x) is zero.

II. The expected value of the sum of two variables is
the sum of their expected values. That is, E(x+v) =
E(x)+E(y). \

I11. The expected value of the product of a copgtant
and a variable is equal to the product of the congtant™by
the expected value of the variable. Thatis, & Qw«,}= cE(x).

IV. The expected valuc of the produpfgy of corre-
sponding values of two mutually indepen}l\erit variables
x and ¥ is equal to the product of theig'cxpected values,
where we call  and ¥ mutually indéptndent if the law of
distribution of each of them rem}tiﬁs the same whatever
values are assigned to the othdr ) )

V. In particular, if x\gr‘ﬂ’ ¥ %@%ﬂclflfrl}aer onoing devia-
tions of two mutuall}?f}ﬁdependent variables from their
expected values, thesexpected value of the product ay is
zero. It is fa,irb{bbvious that V follows from I and IV.

Tt is copyenjent in the discussion of random sampling
fluctuations ‘to deal with the problem of the distribution
of resulgsdrom samples of equal size. To give a simple
(54 ~i}1\e, let us conceive of taking a random sample con-
sisting of 1,000 men of a well-defined race in which some

~eharacter is measured giving us 1,000 variates. Next, sup-

43" pose we repeat the process until we have 1,000 such sam-
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ples of 1,000 men in each sample. Then each of the sam-
ples would have its own arithmetic mean, median, mode,
standard deviation, moments, and so on. Consider next
the 1,000 results of a given kind, say the 1,000 arithmetic
means from the samples, They would almost surcly difler
but slightly from one another in comparisen with differ-
ences betwcen extreme individual variates. But if the
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measurements are reasonably accurate the means would

differ and form a frequency distribution. This frequency
distribution of means would have its own mean (mean of
means) and its own standard deviation. We are especially A
interested in such a standard deviation, for it may be
taken as an approximate measure of the variability 0,{"" s
dispersion of means obtained from differcnt samples, THis
standard deviation (standard error) would no doght Bt a

fairly satisfactory measure of sampling fluctyatiens for
certain purposes. N4

Although the process of finding mean yalues from cach
of a large number of equal samples with‘a large number
of individuals in each sample gives fis'a’useful conception
of the prob@w&&mﬁﬁ%.gspgﬁm thean valucs, it would
ordinarily be a laborious and wittally an impractical task
because of paucity of availablé data to carry out such a
set of calculations. Therstatistician ordinarily obtains a
result from a samplfe‘b}a calculation, say a mean value Z,
and then investig\t‘es’fthe standard deviation of such re-
sults without taking further samples. That such a treat-
ment of the\pfeblem is possible is clearly an important
mathemagical achievement,

The(space available in the present monograph will net -
permif'the derivation of formulas for the standard devia-
tion"of sampling errors in many types of averages or

“\parameters. In fact, we shall limit curselves to presenting
only sufficient derivations of such formulas to indicate the
nature of the main assumptions and approximations in-
volved in the rationale which supports such formulas, and
certain of their interpretations. Preliminary to deriving
formulas for standard deviations of sampling errors in
certain averages and paramcters, we need to find the
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standard deviation and correlation of errors in class fre-
guencies of any given frequency distribution, For brevity
we shall use the expression “standard error” in place of
“standard deviation of errors.”

41. Standard error and correlation of errors in class
frequencies. Suppose we obtain from a random sample ¢c.‘»f\\

a population an observed frequency distribution O

fhfzr"":fi!""!fn

Y
with a number f, of individuals in a ¢lass¥, and with a
total of fi+fo+ . . . . +fa=s individials observed in the
sample. O

Suppose next that we shgu,kj g]g};gmgllgrﬁggglmber of
such samples of 5 observations'¢ach taken under the same

essential conditions. A c}a.ss frequency f; will vary from
sample to sample. Thesévaluesf; of will form a frequency
distribution. We sct‘\’the problem of expressing the ex-
pected value of\je square of the standard deviation gy,
in terms of obgerved values.

To solvc this problen1, we may consider that any ob-
servatigr to be made is a trial, and that it is a success to
obtaim&n observation for which the individual falls in
the%l'ass . Let p: be the probability of success in one
,mal and ¢,=1—p; be the corresponding probability of

~\. Mailure.
N/ In sets of s trials with a constant probability p, of
obtaining an individual in the class ¢, we have from page
27 that the square of the standard deviation of f; in the
theoretical distribution is given by

(1} 0'},—_—5}5;9::5?:(1_%) .



jov

\

¢\Ming (1) in terms of observed frequencies. The reason for
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In statistical applications, we do not ordinarily know
the exact value of p,, but accept the relative frequency
J4/s as an approximation to g, if s is large. If we thus
accept f,/s as an approximation to p, and substitite )

- pe=fy/s in (1), we obtain

2

O\

{2) a?c=ft(1"ft/5) .\'\ -
as an approximate value of the square of a7, cony2pi: ntly
expressed in terms of observed frequencies. { ¢

The value (2) is regarded as an apprapriate approxi-
mation to the value of (1) because (19 May be obtained
from (2) by replacing the quotie;}{\xf,,fs by its expected
value p,. It is usually agreed Athohg statisticians, Fow-
ever, thﬁ&«&hﬁt{mﬂﬁpﬁnwﬁm@ﬁoﬁ to (1) would be an ex-
presston which as a whole Bas the second member of (1)
as its expected value. The ‘expected value of the product
71 =F./s) is not the.product sp,(1—p,) of the expected
values of its { actqr.&tas we shall see in the next paragraph.
It will be fom\d\'fhét the second member of the equation
) \

. h= (1)
Re

&
ha\\&szﬁc(i — 4} as its expected value, and (3) is therefore
:fegarded as a better approximation than (2) for express-

the advantage of formula (3) over formula {2) is the sub-
ject of frequent inquiries by students of statistics, and
it is hoped that the discussion here given will contribute
to answering such inquirics.

In accordance with the principle just stated it will
be secn that the error introduced by replacing sp{1— )
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by /il —/:/s) Involves not only sampling errors, but also

a certain systematic crror. Thus, although the expected
value of /i is 5p. (p. 26) and the expected value of 1 —/,/s

is 1—p., we shall see as stated above that the expected
value oi the product fi(1—7,/s) is not equal to the product - ¢\
sp{1—p.) of the expected values, but is in fact equal to \¢
(s—1}p.(1—p,). We may prove this by first express,injg\*
{1}, with the help of the definition of gy, in the fog;; g

L

(%) E[(fi—spiti=sp{1—p)), \ v

and then applying the last proposition ompage 21 which
states that the expected value of the sghare of the vari-
alde « is equal to the square of thelexpected value of x
increased by the expected \-'H]‘L‘ié’j@l})ﬁ%lsb(l{ﬁﬁ e dt 'the de-
viations of x from its expectedfﬁ"al'ﬁe. ‘Thus, for a variable
¥ =f; with an expected valug 3, we write

EU!:) =-‘2P:2+€wt“sﬁc)2]=52Pt2+5PI(1"'P!)
from (4). 3*’urthp‘r\\w

(3) i%@};},g =E(f)— iE ()
4 u\’l y
"\

=shespi—pll-pY=(s~Dp 1~ ) .

S

ijfnultiplying both members of (5) by 5/(s~1), we may
A\ Write
QO )
spll—p0) =E[s__"“1fc(1 ‘—f:/f)} .

Thus, in approximating to the value spl—p,) in the
right member of (1) by means of a function of the ob-
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served f,, we note that the function sf,(1—f/s3/(s—1)
has the expected value sp,(1 — p,) which we scek, and that
f{1—f,/s) given in the right member of (2} as an approxi-
mation to sp{{—p,) contains a systematic crror.

In finding standard errors in means, moments, correla-
tion coefficients, and so on, it is important to know the,
correlation between deviations of frequencies in anyrtwo”
classes. Let 3f; be the deviation of f; from the thﬁcgz:ét'ical
mean or expected value of the class frequencysi taking
a random sample of s variates, Then since fﬁ?ﬂ- .
+fit ¢+« -+ +fa=5=n constant, we have !

A
©) ittt e e A8t - Pfu=0.

If g}{};“;%l]giﬁigggﬁi_gpg i 1‘2{‘. fabre than the expected

number in the class ¢, it mayreasonably be assumed that
a deficiency equal to — @ will tend to be distributed
among the other groyp$iin proportion to their expected
relative. frequencies{

Now suppose(we had a correlation table made of pairs
of values of 3 and &f,, obtained from a large number of
samples, ‘Qo’nsider the array in which 5f, has a fixed vslue
By (6),\fqr each sample,

~C
.§""5fl=5f1+5fz+ coee At it o i
: .\'; »* Assume that the amount of frequency in the left mem-
“\* ber of this equality is distributed to terms of the right
member in such proportion that, for a fixed &/, the mean .
value of 8y is

(7) —5, ;i%;f—af‘ . -1-{1";‘.

This gives the mean of the array under consideration.
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1t is fairly obvious that the correlation coefficient

1 x Y

QS
of & pairs of deviations « and y from mean values is, ¢
cqual to :..i\‘“’x

1 z E w:fg\'”/
N - Tr Oy ’ ,,':x\\ ’

W

where 4, 15 the mean of the x-array of 4’ ,;QI\;H'N, is the
number in the array. Then 0,'\\"

&
: 9 z\
ro.oy=mean value Omwﬁwzm" gin
«™l x

Nl

~
\
N

Nt . .
By attaching this meanmg:.tﬂx the correlation coefficient

715, of fr and fp and usi&rr\g (7) for the mean of the array,
we have o\
&NV
4 \ 6 (Pg’
T1fe9 1,0 7y =meamyvalue of - §f, « T:-_p;
&
?\f’ﬂ (mean value of §72)= — e ard
O\ 1=p 1-p,

O\
(A = —spipe from (1)
\"
/"\: w 4
\/'(9) == ﬂ-—fi‘:’f

as a first approximation.
A systematic error is invelved in replacing sp b, by
ffv/s on account of the correlation between f, and Jr.
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To deal with the effect of this correlation, we may first
writc (3), page 83, in the form

i=N
I~ .
i Z Eiy =XVt ro.oy.
el

If we are dealing with a population or theoreticg.i\?ﬁs?
tribution rather than with a sample, this iormuba'*gf ves
us the proposition that the expected value of the pl‘o J.Ct
x;v;, of pairs of variables is equal to the pr@\y t, &4, of
their cxpected values Increased by the groduct, ww of
the correlation cocllicient and the Lye) standard devia-
tions. '\\.

To apply this proposition Wh‘c.ri w=/; and w=/f¢, we
note fram, 48-4haty afGF. otlgq‘populatlon, YTy —SP P,
and recall that F(f)—spp wnd E(je)=spy. Then the
propesition stated aboue gives us

EQJ:)— 5 PtPs —spipe,
(10) am /9= B == Dpupe.

T i:):btain the right member of (8} as accurately as
possiiﬂe in terms of the observed f; and f;, we multiply
poth members of (10) by s/(s—1) and then notc that
N/ (s—1) has the expected value spepp. In the right
member of (9), the value ffy/s used as an approxima-
tion to sppe thus contains a certain systematic error. To
climinate the systematic error {rom (9), we write

(11} o

in place of (9) as a second approximation to {8).
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42, Remarks on the assumptions invelved in the deri-
vation of standard errors. The three outstanding assump-
tons that should probably be emphasized in considering
the validity and the limitations of the resulls (2) and (9)
are {¢) that the probability that a variate taken at
random will fall into any assigned class remalns constant,

) RO N
() that the number s is so large that we obtain cert;im".

valuable approximations by using the relative freggency
7i/'s in place of the probability ¢, that a variatc, falen at
random will fall into the class ¢, and (¢) that ang sampling
deviation §f; from the expected value of a Jass frequency
is accompanicd by an apportionment of >— 8¢ to other
class frequencies in amounts proport;ig{é&i to the expected
values of such other class fr@f%%m&ﬁ&'a@ﬁﬁ-hhﬁﬁﬁlﬁ gEsUmp-
tion (4} involves more than is_apparent on the surface,
because in its use we not 011:?;~fcplace a single isolated
probability p, by 2 correspbnding relative frequency fi's,
but we further assumesthe liberty of using certain func-
tions of the relati\fezfl‘:éﬁuencies in place of these functions
of the corresponding probabilities or expected values.
This procedurgnniy lead to certsin systematic errors in
addition tq fHe sampling errors. For example, we have,
in obtaining (2), used the function S =1/s) of fi/s in
piac&,{')“fx‘the same function sp(1—p,) of the expecicd
valge, %1, and have by this procedure tended to under
estimate the expected value when s i finite. That is,

;ff;(i —fi/5}/(s—1} and not Sl1~1/5) is our best csti

mate of the expected value. However, when s becomes
large, fi(1—/./s) is a valuable first approximation to the
expected value,

The rule that the expected value of g function may be
taken as approximately equal to the function of the ex-

Q!
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pected value has been much used by statisticians in a
rather loose and uncritical manner. A critical study of the
application and limitations of this rule was published by
Bohlmann® in 1913. While it is beyond the scope of this
monograph to enter upon a general discussion of Bohi-
mann’s conclusions, it is of special interest for our PUrposs,
that the application of the rule leads at least to first, ’p-
proximations when the functions in question are a,lgﬂbr aic
functions. Although it may seem that we hayé i the
derivation of (2) and (9) taken the liberty té Substitute
relative frequencies rather freely in place\df’ the preba-
bilities required in an exact theory, thls@‘ﬁcedure may be
extended to any algebraic functionsiwhen the number s
is veryd@rggraﬁmaﬂsgogﬁggctatmn of obtaining useful
approximations. Since certam derivations which follow
make use of (2) and (9), thezesultmg formulas involve the
weaknesses and limitations of the above assumptions.

43. Standard erromw in the arithmetic mean and in a
qth moment coeﬂipient about a fixed point. For the arith-
metic mean of x\hbserved values of a variable x we write

t=n

&
o i=y 2 s

& =1

N\
‘vg*h}re Ji is the class frequency of x,.

Suppose the 5 values constitute a random sample of

~ observations on the variable x. Suppose further that we

continue taking observations on x until we have a very
large number of random samples each consisting of s ob-
served values, Then assume that there exists an expected
value of each f, about which the observed f¢'s exhibit
dispersion, and that corresponding to these expected val-
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nes there exists a theoretical mean value T of & about
which the #'s calculated from samples of s exhibit dis-
persion. Using 3/ and 8% to denote deviations in any sam-
plc from the expected values of f and %, respectively, we N
write R
53£=2x;5f; y 2 AN
N\

$OE) = 20 (T )+ 20 (el )

where the sum 2, extends from é=1to =1, :ankz’ is the
sum for all values of ¢ and ¢’ for which =4

Next, sum both membears of this equality” for all sam-
pies and divide by the number of samplég.” This gives in
the notation for standard deviationd{p. 119) and for the
correlation cocfficient (p. 12S')\g/\:'idhvhulibfal‘y-Ofg-iﬂ

stof= 2 (wi0%) + 220w wvar,0p,17,4)
By using (1) and (8), we have
\

sei= S T () ~ 23 (et

= M )r=pi— =t

N/
where ¢ s\“fh‘e standard deviation of the theoretical dis-

tribu %ﬁ)" Then
(123: "f—‘%’é .
s ) y

a \

\ ) Instead of the o of the theoretical distribution, we
ordinarily use the ¢ obtained from asample. To introduce
the expected value of ¢* from the sample, we may, for a
first approximation, use (2) and (9) in place of (1) ana
(8} above, and obtain very simply a form identical with

(12).
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As a second approximation, we may use {3) and (11}
in place of (1) and (8) above, and obtain very simply

2

a_ 7 =T
(13) =T and o, G172
O\
where ¢ is to be obtained from the sample. O

The distinction between the expected value of £ from
the population and from the sample involve®a rather
delicate point, but one that has been lopg@ecognized in
the literature of error theory. The distingtion has been
rather generally ignored in books {/siatistics. In nu-
merical problems, the differences inthe results of formulas
(12) wd£1 Ulblc when.¥ is large.

The stan a,r?ll cv g‘n (s“tandard error) may well
serve as a measure of samphnﬁ fluctuations. But custom
has not established the“direct use of the standard crror
to any considerable@xtent. The so-called probable erro
has come into QQ el more common use than the standard
error. The ppebable error E is sometimes defined very sim-
ply as 6745 times the standard error without regard to the
nature,Qf the distribution. This definition of the probable
error"does not impose the condition that the distribution
of ‘results obtained on repetition shall necessarily be a
Snormal distribution, But with such a definition of prob-

'“\' ) able error, the real difficulty is not overcome, but merely

\/  shifted to the point where we attempt an interpretation
of the probable error in terms of the odds in favor of or
against an observed result obtained from a sample falling
within an assigned deviation of the true value,

Thus, in the derivation of (12) we have obtained, sub-
ject to certain important limitations, the standard devia-
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tion of means % obtained from samples of 5 about & theo-
retical mean value # which may ordinarily be regardid
as a sort of @ true value of the mean. If the distribution
of #'s obtalned from samples about such a true value is
essumned to be a normal distribution, we may by the usc
of the table of the probability integral state at once ),
the odds are even that an % obtalned from a sam plawiil”
differ numerically from the true value by not mowg than

E=.6743 (standard error) . L&

It is the assumption of a normal distribution of the means
from samples combined with the specifigation of an even
wager that brings the multiplier 30§45 into the problem.

We may further expedi’f@”fh‘é}]{?%ﬂE'?_ﬁ?‘.‘i%f"ﬁ‘ﬁgﬁ]npling
errors by finding the odds i}'i{%ifvor of or against an ob-
served deviation from th@;‘tfﬁe value not cxceeding nu-
merically a certain m'L,LJtiprié' of I, say {F. As f increases
to 5, 6, or more, the odds in favor of obtaining a deviation
smaller than £ s@e’so large as to make it practically
certain that we wil obtain such a smaller deviation.

We ha\»:e\'d}iséussed briefly the meaning and limitations
of probablererrors. The most outstanding limitation on
the intefpretation of probable errors is the requirement
of anérmal distribution of the statistical constant under
cobsideration. We have to a considerable extent used the

s _arithmetic mean as an Hlustration, but the same general
' requirements about the normality of the distribution
would clearly apply, whatever the statistical constant.

We shall consider next the standard error in a gth
moment coefficient u; about a fixed point. By definition,

sup= 2 (x3f) .
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For the relation between deviations from theoretical val-
ues we have

sty = 22 (x15f) - .

*

Then

L\
_2 2 AN
325;’15 = Z (xf“fﬁf;) ‘1—22!(563:&‘?’5{:5&,) . \ \,,\z
:‘s.’s
Sum both members of this equality for 2 lafge number
of samples N and divide by N. This givesia the notation
for standard deviations (p. 119) and Q}E the correlation

coefficient (p. 123) \\\
= [P e \ v {
W\ﬁfﬁbl'%gﬁ‘;{g_ﬁz‘g%&('&w OO T c') .

Using (1) and (8), we hayéfém

sofi= S (e (e p8) — 2 (it pipy)
= M{‘\"&x??:)z

=
P Y
'I‘henx’,\“'
:“\".

\\' , i 12

e aﬁ,z[ﬂw_ﬂa] ,
P 3
a\ Y

\/  where the moments in the right-hand member relate to
the theoretical distribution. By methods analogous to

those used in the case of the arithmetic mean (pp. 127-

28), we may pass to moments which relate to the sample.

The probable error of g is then E=.67450,;, and

the usual interpretation of such a probable error by means
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of odds in favor of or against deviations less than a muiti-
pleof Eis agaln dependent on the assumption that the
gth moments pp found from repeated trials form a
ncral distribution.

44, Standerd error of the ¢th moment u, about al )y
mean, In considering the problem of the standard erfor
of a moment about a mean, it Is important to ICCOgIlML
the difference between the mean of the pODuidtLo*n and a
mean obtained {rom a sample >

For simplicity, we shall cc‘pmdcr the prbblem of the
standard errer in a gth moment aboutthe mean of the
population when we take samples of ;s.*}a:}iates as in § 43,
The mean of the population is afixed point about which
we take the sth moment \@i}\eaﬂifﬂfbpieyaflgivariates
Then if we follow the usuaj ’plfm of dropping the primes
from the s to denote sznents about a mean, we write
from (14} A\

3%, = (B2~ n3)/s
for the squar\%{f’?.he standard error of u, in terms of

moments offthe theoretical distribution.
in patticular, we have for the standard error of the

seconghimoment
:\ ok, = (na—p?) /5 .
N\
+When the distribu tion is normal,
~O
V =3, and o, =2p2/5 .

Since o= (1;)""2, we have

nearly,
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Square cach member, sum for all samples, and divide
by the nurber of samples. This gives

2
Un 2u2 g7
[ 2 M LR
T=o=r5=5  of  g,=o/{2542,
7 4e? dsg? 25 7T EAES

Hence, the probable crror in approximating to the’)
standard deviation o of the population by the sianidard
deviation from a sample of s variates is given, gbproxi-
mately by \\

67450, = 67430 /(25)12 | NN

To avoid misunderstanding, it should-ferhaps be em-
phasized that we have throughout thig"section restricted
our discussion to the gth moment™about the meun of the
POPUE&QQ,I‘{,_dﬂ'.tg:u@ggb}%r.gﬁu&lﬁaﬁng with the standard
error In the gth moment afout the mean of a sample
offers additional clifﬁcult’ié’s‘ because such a mean varies
from sample to sample, A problem arises from the cor-
relation of errors imthe means and in the corresponding
moments. Furthenproblems arise in considering the close-
ness of certaifapproximations, cspecially when the mo-
ments ar&\Offairly high order, that is, when ¢ is large.
We shallsimply state without demonstration that the
squage bf the standard error in the gth moment about
t‘hg'}lean of a sample is given by

(og—p1g® 2qvg 149~ T q o1}
5

as a first approximation. For g= 2, this expression be-
comes {u2s— ) /5. Torg=4, it becomes {us—ps®) /s 1n the
case of a normal distribution. These expressions for the
special cases g=2 and g=4 are the same as for the mo-
ments about a fixed point.
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45, Remarks on the standard errors of various statis-
tizal constants. We have shown a method of derivation
of the standard errors in certain statistical constants (the
mean, the gth moment about a fixed point), and in partic-
ular the derivation of probable error of the mean. Our
main purpose has been to indicate briefly the nature 0&
the assumptions involved in the derivation of the, ngest
common probable-error formulas. The next step, would
very naturally consist in finding the correlatloms oferrors
in two moments. Following this, we couldmc}eal with the
general problem of standard errors in parateters of fre-
cuency functions of one variable or;xtl%'assumptlon that
the parameters may be expressgdNn terms of moment

coefficients. Thus, let oo {dbrautibrary.org.in

y=J(z, b b - .- )

be any frequency cucve, where any parameter

iﬁ‘#fﬁ,l-‘!s“s, °"'.-.u'ﬂ:"")

is a functich of the mean and of moments about the mean.
Suppésé that this relation is such that we may express
6¢; ugérms of 8%, dysz, dus, . . . . , at least approximately
differentiation of the function ¢. If we then square

}.fac;, sum, and divide by the number of samples, we obtain
** an approximation to the square of the standard errorin¢;

m\J

While, in a general way, this method may be described
as a straightforward procedure, the derivation of useful
formulas is likely to involve rather laborious algebraic de-
tails. Moreover, considerable difficulty may arise in esti-
mating the errors involved in the approximate results.

The difliculties of estimating the magnitude of the
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errors involved are likely to be much increased when the
statistical constant, for example, a correlation coefficieni.
is a function not merely of the moments of the separats
variables, but also of the product moments of two vari-
ables. A

0\‘

In concluding these remarks on standard errors of stax
tistical parameters obtained from moments of obsér\“-
tions, it may be of interest to point out that the cha‘r.ic;ei—
ization of the sampling fluctuations in such parameters
may be extended and refined by the use ofigher-order
moments of the errors in the parametergs B! H, Camp has
shown that the use of moments of order higher than two
may very naturally be accompamed by the use of a cer-
tain number &%r%‘?ﬁ%%a?'g/ grg@.—(:harher series as a dis-
tribution function.®

46. Standard error of' the median. Thus far in our
discussion of standard£rrors and probable errors, we have
assumed that the sta\mstlcal constants or characteristics
of the frequcncy\]‘unctxon are given as functions of the
moments. Thiere are, however, useful characteristics such
as a mediatf/a quartile, 2 decile, and a percentile of a
distribufien which were not ordinarily given as functions
of n’}\Qn{’ents Such a characteristic number used in the
descnptlon of a distribution is ordinarily calculated from

~its definition, which specifies that its value is such that a

AN

) “certain fractional part of the total frequency is on either

side of the value in question. For example, 2 median m
of a given distribution is ordinarily calculated from the
definition that variates above and below m are to be
equally frequent. Similatly, a fourth decile D, is calcu-
lated from the definition that four-tenths of the frequency
is to be below Dy We are thus concerned with the sam-
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pling fhuctuations of the bounds of the interval which in-
cludes 2n assigned proportion of the frequency.

Toillustrate further, let us consider the standard error
in the median m of samples of N of a variable x distributed
in accord with a continuous law of frequency given by

=f(x). We assume that there exists a certain ideal medi-
an value M of the population of which we have a sam;gle
of N and that by definition of the median 1/2 is then the
prchability that a variate taken at random falls? above {or
below) M. We may then write that in arry\sample of
N variates taken at random from the mdeﬁmtely large
sat, the number above M is N/2+d. ?l‘i?at is, the median
m of the sample is at a distance 35 \6m from M. When
¥ has a value corresponding ¢ to ﬁbra uﬁb?gr:g/ in ;’I}g inter-
val Jm, we may write &

yém =d

to within mﬁmtesmlals of h:gher order.

Such an equation connects the change 5m in the me-
dian of the sample from the theoretical 3 with the sam-
pling deviatign € of the frequency above M. Then

\¥;

O d |
\\; om =y and 7
Bnt from (1}, page 119,
' N1/2
63=N3§q=§ . Hence 0-.=7y—-
If we have a normal distribution
- e N e
y—f(x)—a(zﬂ_)m £ '
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the value of y at the median is given by

N

N
y—a—(zm‘— .30894 0_' y

and the standard error in the median found from ranksis

1.25336 o))
(15) a’m=-——-Nu2 a ‘:}‘ \

Although the theoretical valucs of the meflmh and of
the arithmetic mean are equal in a normal Qistribution,
the median found irom g sample by ran&mw has a sam-
pling error 1.2533 times as large as th(; “drithmetic mean
obtained as a first moment from the'€ame sample.

47. Standmsi.Anwistien. of, f the sum of independent
variables, In sampling probh ins it is often found useful
to know the expected valugof the square of the standard
deviation of the sum ¥ X, 4+Xo4 + -+ - +X, 0f 5 U~
tually indcpcndenj:g”\s}riab]es when we have given the
standard dcviati'?)ﬁ;no-l, G2y - . . ., O of cach variable in
the populatiof to which it belongs.

Assumingthat the given deviations are measured from
the theqf\tlcal or expected values for the populations, we
consider deviations x;=X;— E(X), and write the devia-
tidhof the sum

oY y=m+tat -+,

Square both sides, sum for the number of samples
N, and divide by ¥. Then we have

1 1
ﬁ2y2=§ P +§sz’+ v +% > x?

+£—$ lexe‘l‘ﬁ% lex.’i"' '
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If we pass to expected values, and let o, of, . . . ., A
deniote the squares of standard deviations of the several
variables and ¢ that of their sum in the populations,
we have

(16} oi=of+toi+ -+ +oi, oS
the product terms vanishing by V, page 117. K )\

It is a matter of some interest to note how the ‘ex-
pected value just found differs from the expeetqd value
of the sum of squares of the s deviations of 5. &, . . . , %
from thelr mean N

1 F
PRI

obtained from a sample. If“’(Qé’ff’eib“”libra"y‘org‘m

*
N
e
O

ad ]
™R

(17) AT R R
A\ £ i3
g"’x\
we are to ﬁnd\\E(xi?+x;?+ cove 2, in terms of
E@D=d (=12, ....,s). From (17) we may write
4 N/
O s—1 Xy ER
i"\." 1=—Txl—-—}-— - - _-? ’
{%.
il mo Lk
) mETTRTY s !
,___3—1 ‘_?E}_ _x._)_
xa_ s x. 5 < L]

Then for i==j we have
2
x4 - —I—x’*—-—— (2 - +ad —;Zx.—xj.
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Hence, passing to expected values, using V, page 117,

A8) Bt -+ ="t el

48. Remarks on recent progress with sampling errors N

of certain averages obtained from small samples. In the

" development of the theory of sampling, the assumpt!an

has usually been made that the sample contams \8 Targe
number of individuals, thus leading to the expecta.,uun
that the replacement of probabilities by, cbrrespondm'r
relative frequencies will give a valuablelapproximation.
But the lower bound of large numbersxhas remained poor-
ly defined in this connection. Far ézample certain proh-
able- -error f%nul?,sb}hﬁgreopgeen applied to as few as ten
observatmns \

Beginning with a paper by Student® in 1908 there
have been important experimental and theoretical resuits
obtained on the disttibution of arithmetic means, stand-
ard deviations, ana‘ correlation coefficients obtained from
small sampleé\\

In 1918, Kar! Pearson®® took an important step in ad-
vance Bx‘obtaining the curve

o~ & e
asy y=yoa" e 2

Mor the distribution of the standard deviations of samples

of # variates from an infinite population distfibuted in
accord with the normal curve.

By finding the moments ps, us, and pq of this theoreti-
cal distribution, and then tabulating the corresponding

==, &“L‘—gg,



o~
\3

SAMPLING ERRORS OF SMALL SAMPLES

and the skewness of the curve (19) [oc inreers . ol

# from 4 to 100, and making use

of the Gl

B:=3, and sk (skewness) =0 are noces-ore o

a normal distribution, Pearson she

YWE AT

the distribution of standard deviations given 1o 10
proaches practically a normal distrilution s p i o A

In this experiment, the necessary

e )
O Ly -

and sk=0 are assumed to he sufficient for HLGEEE Y

proach to a normal distribution.

7
<

From this table of values, Pearson r:(uu'ip..\--"f Mo o

samples of 50 the usual theory of profbidlNwre g

standard deviation holds satisfact

OI‘iE‘\'..i‘Q«"I e e

it to samples of 25 would not lead fpduf i

HE A I
X

tance in the majority of stalistinabsiaulibrary.org.in

hand, if 3 small sample, 2 < 2Q0

taken, the value of the standard deviation rogmi e

the sample tends to be l;s.s;fe:t’h;m
of the population. )

In a paper pub%i{sh}sd m 1915, R, A Fishers etiy i

the frequency disfriBution of the
derived from samples of # pairs
from an infifite population di

rela 161 Coefficient.
gvEn'by Fisher for
"\th‘e invest:igati_on of i
Inereases seemed to
ing the ordinates a
Were given in g
Young,

ts approuch

nd moments,

ues of 3, and B were computed fo
study the approach to the normy

The frequency function L
the distribution ¢

require special wiethos TOT o

joint memoir® by H. ¥,
B. M. Cave, A, Lee, and Kay p

ay, ul a ST

the standar i

correlation conin g

each filen ot ropen,

stributed in accord wirs o
normal egreelation surface {p. 104), where 5

sothe ooy

Wrowas such (g
to 2 normal iy, BRIy
e
Such special i
Sepner, g Wb
Caraon. T

F these distribuii, .. .

lcurve.
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Hence, passing to expected values, using V, page 117,
(18) E(x2+4 .- +x:2)=3;31 (34 -« +oY).

48. Remarks on recent progress with sampling errorsg
of certain averages obtained from small samples. In t'h\}
development of the theory of sampling, the af-qumptmn
has usually been made that the sample containg a\large
number of individuals, thus leading to thequSectatio.n
that the replacement of probabilitics by\gotresponding
relative frequencies will give a valuable approximation.
But the lower bound of large numbers kds remained poor-
ly defined in this connection. Fopezample, certain prob-
able-erzor, @%%@g.v? (}%%ﬁ: IRK \applied to as few as ten
observations,

Beginning with a paper by Student®™ in 1908 there
have been important experimental and theoretical results
obtained on the distxibution of arithmetic means, stand-
ard deviations‘,&@:d i:orre_lation coefficients ohtained from
small samplesy

In 1915, Karl Pearson® took an important step in ad-

vance bjk'dbtaining the curve
nxt

(19} y=yute 27

*

N ») for the distribution of the standard deviations of samples

3

of # variates from an infinite population distfibuted in
accord with the normal curve.

By finding the moments g, us, and u, of this theoreti-
cal distribution, and then tabulating the corresponding
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and the skewness of the curve (19) for integral values of
n from 4 to 100, and making use of the fact that 8, =0,
B.=3, and sk (skewness) =0 are necessary conditions for
a normal distribution, Pearson shows experimentally that
the distribution of standard deviations given by (19) ap-
proaches practically a normal distribution as # increases(™),
Ir: this experiment, the necessary conditions 8, =0, 8: =3,
znd sk=0 are assumed to be sufficient for practical Hp-
proach {o a normal distribution. O
From this table of values, Pearson concludes that for
samples of 50 the usual theory of probable érror of the
standard deviation holds satisfactorilyy an\d that to apply
it to samples of 25 would not lead tesany error of impor-
tance in the majority of statigticalghoblems, O phe other
hand, if a small sample, #< 2034y, of a population be
taken, the value of the stalidard deviation found from
the sample tends to be 1¢g8 than the standard deviation
of the population. \ ‘
Tn a paper published in 1915, R. A. Fisher® dealt with
the frequency g:let}ibution of the correlation coefficient r
derived from,'sémples of » pairs each taken at random
from an infigite population distributed in accord with the
norma,l\'&}frelation surface (p. 104), where p is the cor-
rela,Qém’ coefficient. The frequency function y,=f,{(r)
gitén by Fisher for the distribution of r was such that
... (the investigation of its approach to a normal curve as #
S\ increases seemed to require special methods for comput-
ing the ordinates and moments. Such special methods
were given in a joint memoir® by H. E. Soper, A. W.
Young, B. M. Cave, A. Lee, and Kasl Pearson. The val-
ues of 8, and B, were computed for these distributions to
study the approach to the normal curve.



140 RANDOM SAMPLING FLUCTUATIONS

With respect to the approach of these distributions
to the normal form with increasing values of #, it is found
that the necessary conditions $1=0, f2=3 for a normal
distribution are not well fulfilled for samples of 23 or
even 50, whatever the value of p. For samples of 100, thes
approach to the conditions $:=0, 8:=3 is fair for Lo
values of p, but for large values of p, say p>.5, theff is
considerable deviation of 81 from 0, and of 3. from 33 7or
samples of 400, on the whole, the approach, tcr the neces-
sary conditions $1=0, f:=3 is close, but there is quite a
sensible deviation from normality whenp2 .8, These re-
sults give us a striking warning of, t‘&e dangers in inter-
preting the ordinary formula for the probable error of #
when wevha dbsmbBrazmplesine

As to the limitations on the generality of these results,
it should be remembered that the assumption is made, in
this theory of the didfribution of » from small samples,
that we have drawn%ples from an infinite population
well described b}&l normal correlation surface, so that the
conclusions.aré not in the strictest sense applicable to
dxstrlbutwﬁs not normally distributed. While the results
just now 7 described have thrown much light on the dis-
trltimons of statistical constants calculated from small
s&mples it is fairly obvious that much remains to be done

~ \on this important problem.

"’ 49, The recent generalizations of the Bienaymé-
Tchebycheff eriterion. Although the use of probable errors
for judging of the general order of magnitude of the nu-
merical values of sampling deviationsisa great aid to corn-
mon-sense judgment, it must surely be granted that we
are much hampered in drawing certain inferences depend-
ing on probable errors because of the limitation that the

LI Y. S L NS B T (Y RS JUF B gty [P S

\
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stant is to some extent dependent in any particular case
on the normality of the distribution of such constants
obtained from samples, and because of the lack of knowl-
edge as to the nature of the distribution.

Any theory that would deal effectively with the prob-_
tem of finding a criterion for judging of the magnitude of.))
sampling errors with little or no limitation on the natil\rc
of the distribution would be a most welcome contribition,
cspecially if the theory could be made of valu iﬁ'dealing
with actual statistical data. The Bienaymé{Ichebycheff
criterion (p. 29) may be regarded as m\important step
in the direction of developing such a gheéory. We have in
the T'chebychefl incquality a theorgtnspecifying an upper
bound 1/32 for the probabjliﬁxmglabﬁ&;gumgtm‘;en at
random will be equal to or greater than M times the stand-
ard deviation without li;pit.éftion on the nature of the
distribution. That is, if RP(\o) is the probability that a
datum drawn at random from the entire distribution will
differ in absoiut{'\ﬁlue from the mean of all values as
much as A, then

@ &7 Pagsh.
O
) G kstablish a first generalization of this inequality
(ofs B 29), let us consider & variable x which takes mutual-
:.Qy"exclusive values %1, %, . . . . , ¥, with corresponding
\m}“probabilities, D1, B2y - . 5 Pn, Where Pyt .. Fpa=1,
Let @ be any number from which we wish to measure
deviations, For the expected values of the moment of
order 25 about a, we may write

35;3=pld%3+?2d%5+ MR +pn "3‘ 3

where d;=x,—a.
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Letd’, d", . , be those deviations x; —¢ which ara
numerically as large as an assigned multiple )\a- (A>1)
the root-mean-square deviation, andlet ', p”, . . . ., ke
the corresponding probabilities. Then we have

#ésgp;drgs_i_?’ndug;_{_ N ’\: o

N
Since d’, d”, . . .., are each numerically as loargé”;is
Ao, we have O °

p;'gxzsoﬁz:(P!_’_?u_ﬁ_ . ) ) m\\

If we let P(Ao) be the probability, that a value of x
taken at random will differ from a nuniﬁenca]ly by as much

as Ao, thencﬁ&'au}lbl r‘-yi_g g—ll_n :' :"".; a.nd
e N m”‘P()\a')
Then 3;"

" ,
PO Sy
and the probability of obtaining a deviation numerically

less than Agis greater than

\w: 1~ )\;‘:':as -

o Thls generalization of the T'chebycheff inequality is
\, O due to Karl Pearson® except that he assumed a distribu-
tion given by a continuous function with e as the mean
x-coordinate of the centroid of frequency arca. For this
case, we should merely drop the prime from p,, and write

(1) TR

.
k?.! 0.23

N
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With s=1, we obviously have the Tchebycheff inequality
as a special case,

Tt is Pearson’s view that, although his inequality is in
most cases a closer inequality than that of Tchebychefi,
it is usually not close enough to an equality to be of
practical assistance in drawing conclusions from statisti:
cal data. On the whole, Pearson expresses not only dis-
appointment at the results of the Tcheby cheﬁ:mequah ty,
but holds that his own generalization still ldel’s, in gen-
eral, the degree of approximation which ¥ould make the
result of real value in important statxétlcal applications.
Hence, it is an important problem’dd obtain closer in-
equalities. The problem of closer inequalities has been
dealt with in recent papermbwsdbmhmathemgmlans 62
Camp, Guldberg, Meidel,: «aind Narumi have succeeded
particularly well by plaCmg certaln mild resitictions on
the nature of the digtribution function F(x). The restric-
tions are of such a fiature as to leave the distribution func-
tion sufficien I)Qge’nera.l to be useful in the actual prob-
lems of stati tics. The main restriction placed on F(x)
by Camp jgthat it is to be a monotonic decreasing func-
tion [;ct when |x{Z¢e, c20. The general effect of this
restrigtion is to exclude distributions which are not rep-

_resented by decreasing functions of |x| at points more
Nthan a certain assigned distance from the origin. We shall

now present the main results of Camp without proof.
With the origin sc chosen that zero is at the mean, he
reaches the generalized inequality

(1), o
821—2 2S+ 1

(22) P()w)_-ﬁ- Tte +3 T ¢P( ¢o) ,

QY
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(5. 2 )”’
A 2541

(25-;-1)(1‘—1) '

where

Boz= ﬁ% and ¢=

When ¢=0, the formula (22) is Pearson’s formula \,.i)
divided by (1 —I—1/2$)2’ \

The general effect of the work of Camp and Q1idel
has been to decrease the larger number of 'tljre “Pearson
inequality (21) by roughly 50 per cent. These‘generaliza-
tions seem to have both theoretical anc(\piractical value
when we have regard for the fact tha{ “the results apply
to almost any type of distribution thxt occurs in practical
applicytichebRidbeEY 08 &drgqcusfymg te have only very
mild restrictions on the nature.of the distribution in judg-
ing sampling errors that fﬁ{-tﬁer progress in extending the
cautious limits of samphng fluctuations given by the
generalizations of fhe Tchebycheff inequality would be
of fundamental Yalue.

50. Rematks on the sampling fluctuations of an ob-
served fregiéncy distribution from the underlying theo-
retical distribution. If we have fitted a theoretical fre-
quency curve to an observed distribution, or if we know
thie theoretical frequencies from a priori considerations,

S \the question often arises as to the closeness of fit of theory

) and observation. In considering this question, a criterion
is needed to assist common-sense judgment in testing
whether the theoretical curve or distribution fits the ob-
served distribution well or not. It is beyond the scope of
the present monograph to deal with the theory underly-
ing such a criterion, but it seems desirable to remark that
the fundamental paper on this important problem of
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random sampling was contributed by Karl Pearson under
the title, “On the criterion that a given system of devia-
tions from the probable in the case of a correlated system
of variables is such that it can be reasonably supposed
to have arisen from random sampling,” Philosophical

Magasine, Volume 50, Series 5 (1900), pages 157-73. .\:§'

Closely related to the problem of the closeness 6f fit
of theory and observation is the fundamental problem of
establishing a criterion for measuring the probahility that
two independent distributions of frequenty)are really
random samples of the same populatioQ. “Pearson pub-
lished one solution of this problefr»in Biometrika,
Volume & (1911-12), pages 250—5;4-:;?1“21& resulting crite-
rion represents an important \%Qﬁlg&q%gg;ngrrg%hemati-
cal statistics as an aid to common-sense judgment in con-
sidering the circumstances\surrounding the origin of a
random sample of data™"

2\
(\J
Ol

N



CHAPTER VI
THE LEXIS THEORY

51, Introduction. We have throughout Chapter I1 s+
sumed a constant probability underlying the frequeney,
ratios obtained from observation. It is fairly obviougthat
frequency ratios are often found from material j.z):;:.ifhich
the underlying probability is not constant. Thenhthe sta-
tistician should make use of all available knowledge of the
material for appropriate classification Juté subsets for
analysis and comparison. It thus b'eg@‘n’es important to
conside‘i‘%%@B?%@W&ﬁ&f?which\fﬁay be broken into
subsets for examination and cémparison as to whether
the underiying probability seéms to be constant from sub-
set to subset. In the sepqr”aﬁdn of & large number of rela-
tive frequencies into #-altbsets according to some appro-
priate principle of elassification, it is useful to make the
classification so that the theory of Lexis may be appiied.
In the theoryB}Lexis we consider three types of series
or distributions characterized by the following properties:

1. The“underlying probability $ may remain a con-
stant\’ihr"oughout the whole field of observation. Such a
s\eﬁes is called a Bernoulli series, and has been considered

ol Chapter IL
(5" 2. Suppose next that the probability of an event

&

\/ Vvaries from tria} to trial within a set of s trials, but that
the several probabilities for one set of s trials are identical
to those of every other of # sets of s trials. Then the
series is called a Poisson series. :

3. When the probability of an event is constant from

146



INTRODUCTION 147

trial to trial within a set but varies from set to set, the
series is called a Lexds series.

The theory of Lexis® uses these three types as norms
for comparison of the dispersions of series which arise in
practical problems of statistics. An estimate of the im-
portance of this theory may probably be formed from the,
facts that Charlier® states in his Vorlesungen éiber mathe-
matischen Statistik (1920) that it is the first essergtjal‘istep
forward in mathematical statistics since the days of La-
place, and that J. M. Keynes® expressedmzi\éomewhat
similar opinion in his Treatise on Probudility (1920).
These may be somewhat extreme views-/when we recall
the contributions of Poisson, Gauss,Bravais, and Tcheby-
cheff but they at least t]‘:lqu\gﬁ_cﬁgigglﬁg}_agg?gmoél}ﬁtanding
character of the contribution.of Lexis to” the theory of
dispersion. The charactc’lji‘sﬁc’ feature of the method of
Lexis is that it encourgges the analysis of the material
by breaking up the whele series into a set of sub-series for
examination of thefluctuation of the frequency among
the various subsseries. Such a plan of analysis surely has
the sanction(of common-sense judgment.

In drawing s balls one at a time with replacements
from. @At of such constitution that p is the constant
pméa?[fi]ity that a ball to be drawn will be white, we have

,a,ﬁ%ady established the following results for Bernoulli

o\ series:

N
%
\ )

1. The mathematical expectation of the number of
white balls is sp (p. 26).

2. The standard deviation of the theoretical distribu-
tion of frequencies is (spg)™® {p. 27).

3. The standard deviation of the corresponding dis-
tribution of relative frequencies is (pg/s)¥? (p. 27).

QY
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52. Poisson series. To develop the theory of the Fois-
son series let 5 urns,

U]JUzj""!U"

contain white and black balls in such relative numbcgs\\.
that ~

N/

Py, P20 P ("}«,

are the probabilities corresponding to the respe\etwe urns
that a ball to be drawn will be white. Lit; )

ox'\

ot b

(1) p=litle ; ?"’
www_dbr‘aulibl'ar‘y.ot'g_in,:,

From (1) it follows that the ﬂiﬁthematical expectation sp
of white balls in a set ofj.;‘,’dbtained one from each urn
is exactly equal to themathematical expectation of white
balls in drawing s balls with a constant probability p of
success, The sta\d&rd deviation op of the theoretical dis-
tribution of th&number of white balls per sct of s is re-
lated to tha dtandard deviation oz = (spq)® of a hypo-
theticalx Bernoulli distribution with a constant probability
of\riuc:cess, by the equation

™

r=y
<

N
S XD s Z(p, Prmcy= S (pum b,
=]
where p is equal to the mean value of #s, po, . . . ., P

To prove this we start with {1) and recall that s¢ is the
arithmetic mean of the number of white balls in any set
of s under the theoretical distribution.
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Let us consider next the standard deviation o of white
balls in the theoretical series of s balls. The square of
the standard deviation of the frequency of white balls in
drawing a single ball with the chance p; that it will be
white is given by oi=pug,, that is, by making s=1in

Pt e L\

When the probabilitics g1, ps, .. .., ps are jglde-‘
pendent of one another, it follows from (16}, page 137,

that O\
a=adtad4 - Fot, ~“‘~.\\'

where oy, @, . . .., ¢, are the standard" deviations of
white balls in drawing one ball frorq{a;c;h urn correspond-
ing to probabilities 1, pa, . . . M4, respectively, and ¢
15 the standard deviation ofw}ai@&f&mﬂm'yn:g'ﬂhﬂ s balls
together drawn one from each urn.

Hence, we have ~

& - i=r
(3) ”2=?1Q1;1:?;Q2+ reopag= thQc .
\\ Y
\ZZ:‘\PE:=P+(PPP) ,  G=g—{(p:—p) -
Herce"

But

& pgi=pg— (e P)(p— ) — (1= $)*

and

t=s t=1 tes
(4) ;P@t:S?Q“";(P:-—P)z , since ;{p,_ﬂ=g .

Hence, we have established (2), from which it follows at
once that the standard deviation of a Poisson series is less

N
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than that of the corresponding Bernoulli series with con-
stant. probability of success equal to the arithmetic mean
of the variable probabilities of success.

To give an illustration of a Poisson seties, conceive of
# populated districts. Each district is to consist of s sub-
divisions for which the probability of death at a given agga
varies from one subdivision to another, but in which 1{16"\
series of s probabilities are identical from district to ds-
trict. To illustrate further this type of dmtnbut,mn con-
struct an urn schema consisting of 10 urns each‘ef w 1‘11(.’1
contains 15 balls, and in which the numbex'aftvhite ba
in the respective urns is 3, 4, 5, 6, 7, 8,9\0, 11, 12, T‘m
arithmetic mean of the probablhties\qf drawing a whilc
ball is wa%bsr%tup{: 10 is obtalneti by drawing one ball
frora each urn. Then eachgball 18 returned to the urn
from which it was drawn, a.nda second set of 10 is drawn.
This process is continued? wntil we have 1 000 sets of 1()
The resulting frequenty distribution of the number
white balls is a Poison distribution.

53. Lexis series. To give a statistical illustration of a
Lexis series, éonceive of # populated districts in each of
which thenprobability of death is constant for men of
given agé; “but is variable from district to district.

T\oﬁdevelop the theory of the Lexis distribution we
dr@%s balls one at a time from an urn I/, with a constant

¢ '{pfébabﬂity Py of getting a white ball, from U, with a con-

L

“stant probability p, . ..., from U, with a constant

probability p..

The mathematical expectation of white balls in thus
drawing s balls is sp1+spet -+ - - +sp,=nsp, where
p=Q/){pr+po+ « « - - +p,) is the arithmetic mean of
the probabilities 1, 3, . . . . , pa.



A

N
%
\ }

LEXIS SERIES I51

Since nsp is the mathematical expectation of white
balls in samples of #s baills, the mathematical expectation
in samples of s balls one at a time from a random urn is
sp. This value sp is identical to the mathematical ex-
pectation of white balls in samples of s balls of a Bernoulli
series with a constant probability #.

Since p, is the probability that a ball to be drawn f.rqh:;..’

urn U, will be white, the expected value of the squargof
the standard deviation of the number of white,fbalﬁs in
samples of s drawn from U; is sp.q. In qtfhér words,
shiqs is the mean square of the deviationslef-white balls
from sp, in samples of s drawn from U ;QIi’ the deviations
were measured from sp instead of s, it follows from the
theorem (p. 21) for changing the origin or axis of second
moments that the mean squ‘ﬁjfé?{)fiﬁfé‘&ébﬁfibﬁﬁﬂ'ﬁ&ﬂd be

(5) spqlopi—sp)*

Suppose this mc@ value of the squares of deviations
were obtained {an 'N samples of s each. Then

(6) .‘.::' NSP;Q"""NSE(P;—P)z

PN\
woulg;l'b‘é”the cxpected value of the sum of squares of the
deﬁ@,t\io’ns from sp in the N samples of s drawn from U
\ By adding together the expression (6) for =1, 2,
.. .,n, wehave

t=n i=%
Y] NS> pgetNs D (b p)
t=1 t=]

for the expected value of the sum of squares of the devia-
tions from sp for the # urns. In obtaining (7), we have

N

N
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drawn in all N# sets of s balis of which ¥ sets are from
each urn.

The mean-square deviation from sp of the number of
white balls in samples of s thus taken from the # urns
Uy, Uy, . ..., Uyis then obtained by dividing (7) by the

number of sets N». This gives O\
3 tf: 52 t=a 's\ h
LT 2 et o

From (4) above
t=x t=n N\
Dorai=npg— > (peH,
t=1 t=1 AN/
www. dbraulibrary org.in \/
and hence RN

LR Y

Fs i=n . : W . s k] \
®) o%=qu+—~n--‘-§(‘m~?)2*a~a+ i ;(pc—w- :
AN\
It should be observed from (8) that the standard devia-
tion of a Lexfs,distribution is greater than that of a
Bernoulli distribution based on a constant probability #
which issequal to the mean value of the given probabili-
ties &}g, e ey P
) 5. The Lexis ratio. Let ¢’ be the standard deviation
,of\a series of relative frequencies obtained by experiment
“\‘from statistical data. On the hypothesis of a Bernoulli
distribution the theoretical value of the standard devia-
tion is o5 = (pg/s)"/? where p is the probability of success
in any single trial. The ratio

d e

ok Tn
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is called the Lexis ratio, where o =s¢’ and 03 =s0%. When
L=1,% the series of relative frequencies is said to have
#ormal dispersion. When L <1, the series is said to have
subnormal dispersion. When L >1, the series is said to
have supernormal dispersion. Ilustrative applications
of the Lexis ratio to statistical data are readily available.”

From the nature of the Lexis theory it is fairly obvi-

7N
& X

TABLE 1 ¢*O
s

State Birthg®  [Deaths per 1,600
California. .. ............... 65,457 . Qﬁ
Conpecticut............. . 33 471 ¢ 72
Indiana.................... )
Kansas.................... D
Kentucky.................. w‘%%’ji? Y llb}ﬂ y-orgin
Minnesota................. 57,185 58
North Carolina............. | w81, 348 66
Vieginia....oooovvennn.... S48 535 68
Wisconsin. ...............a0" 61,3582 72

Arithmetic mean. \‘ e 55,257 65.7
X 3

s
the application of* tﬁ: theory to particular statistical data
invelves break'mg up the aggregate into a number of sub-
sets according to some appropriate scheme of classifica-
tion which would ordinarily depend on much knowledge
of the naterial which is the subject of the investigation.
T}ken we are concerned not only with a frequency ratio
_Ior' the entire aggregate, but also with the stability of
frequency ratios among the subsets. The dispersion of
frequency ratios is calculated and compared with the ex-
pected value in the case of a Bernoulli distribution.

As an example, let us consider the dispersion of death-
rates of white infants under one year of age in registration

¢\
A\
ous, as implied in the introduction to this chapter, that

N

N
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states® of the United States in which the number of
births per year of white children is between 33,000 and
67,000 (see Table I). This restriction is placed on the
selection of states so that the number of instances per set
has only a moderate amount of variability.

In most of the practical problems of statistics, {llg
exact values of the underlying probabilities are unkfipwn
and the best substitutes available are the appr«’};iﬁm te
values of the probabilities given by avail a.blc elative fre-
quencies. Substituting these frequency rat“n:. as approxi-
mations for p and ¢, we find the Berdoulli standard
deviation from the formula o5 = (pg/s 2. We then com-
pare ¢ with the standard devm\bn obtained directly
from&];bqud&gpauﬁ‘m nthmetxc mean of the death-
ratesis 65.7 per 1 000, an the:r standard deviation {with-
out weighting) is 5.21 per 33000, If these infantile death-
rates constituted a Bemnoulli distribution with a number
of instances equal £0the average number of births, 55,257
in each case, .WQisﬁould have

Q" _(E)w [&w]“
O =) T[T s

\i\ =.00105 per person,  =1.05 per 1,000.
O\

“3 Hence, the Lexis ratio is

21
L-m—él.‘?ﬁ .

Hence the dispersion is supernormal, and we have
trong support for the inference that there is a significant

. variation in infant mortality from one of these states 10
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another. The full interpretation of this fact would re-
quire much knowledge of the sources of the material,

A reasonable plan for the determination of the maxi-
mum district over which the infantile death-rates are O
essentially constant seems to involve breaking the aggre- A .
gate of instances into subsets in g variety of ways and, ™
then testing results as above. Some measure of doubt
remain, but this procedure encourages the kind of q{xaj}sis
that gives strong support to induction. '"\Q{’



CHAPTER VII

A DEVELOPMENT OF THE GRAM- .
CHARLIER SERIES L\

55. Introduction. In § 56 we shall attempt to ghd\;{cf .
p. 65) that a certain line of development® of thé\binomial
distribution suggests the use of the Gram-.(.?héflier Type
A scries as a natural extension of the D@ Noivre-Laplace
approximation and the Type B seriesas/a natural exten-
sion of the Poisson cxponential apploXimation considered
in ChiptérProihiar 1088 15788 We shall develop meth-
ods for the determination of ‘the parameters in terms of
moments of the observe@irequency distribution, thus
deriving certain resulf®® stated without proof in 819
and §21.

56. Ona gle.vié;pment of Type A and Type B from the
law of repea:te}d\trials. As in the De Moivre-Laplace the-
ory, we cg)l:lisider the probability that in a sample of 5 indi-
viduals,:’?tziken at random from an unlimited supply, 7
individuals will have a certain attribute. That is, the

) &sb’hbiﬁty we wish to represent is given by

)

BOY= e V0

7l {s—
and we shall use a function of the form
(1) Bo(x) = 51; e dw,

156
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for interpolation between the values B(r), where 2= ~1
and
=5

(2) 8(w) = (peviq)* = ZB(r)e"‘“ .

r={

In the terminology of Laplace, 8(z) is the genera,tmg fun&w\
tion of the sequence B(r).

We shall first show that By(x)=B(m) when# is a
positive integer m. To prove this, substltuta Q(w) from
(2) in (z) and integrate. This gives )

Y,

By(a) = zB(r) sin (’ ")"' A
\a\rww_gibr'aﬁlibl'ary.ot'g_in

sm( :\::r) sin ('i —~x)r

= B(0) +B(1) -——(1 2)

sin (s—a)r

+--'-+B(s)w-

AN\

When x=m is @‘positive integer, each term but one of

the right member vanishes and this one has the value
B(m). Accérdingly, By(m) = B(m).

ThysJermula (1) gives exactly the terms of the expan-

sion, 6f)(p+¢)* for positive integral values x=m. It may

be{¢ensidered an interpolation formula for values of z

_Between the integral values.

We shall be interested in two developments of this
interpolation formula. The first is based on the develop-
ment of log f(w) in powers of w, and the second on the
development in powers of p. The resulting types of de-
velopment are known as the Type A and Type B series,
respectively.



158 DEVELOPMENT OF GRAM-CHARLIER SERIE3

DEVELOPMENT OF TYPE A

From the form of 8(w) in (2), we have

dlog 6(w) _ ispe™
(%) dr gtpet

Develop the right-hand member of (3) in poufg—;{fs:\q}’

w and we obtain

Z N
< 3

3108 06) 114 qui—hq(p ~ )i 3

Thus we have by integration, reme{n:b}ﬁng that 8(0) =1,

vl aulibrir‘y.org,in 1.:,5
log 0y ms| it & palD < bap— @i |

or writing N
4 s b
.,\\51wi +gilehthg] (bt e
Sir)=e
\\
we have
2N/

() Bidsp,  bmspy,  be=—spglp=ad s

@

N/
. ~.§We now write

“~
N

\\1\, (6) B(w)=ew 21~ Ay(wiy+ Au(wi)t = -+ - |-

Since it follows from (2) that #(w) is an entire func-
tion of w, the series in brackets in the right member of
(6) converges since it is the quotient of an entire function
8() by an exponential factor with no singularities in the
finite part of the plane.
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From (4), (5), and {6) we have
() da=%spg(p—q),  As=rspe(1—-6pq) ,

Inserting 8(w) from (6) in (1), we have \

1r L\

(8) Bu(x)::fl;f dwe-*(-t‘-'bl}lm'—b‘w’f2 [I_As('w‘t')s \\ ot
+ As(wiy— & .1 )
If we write \,\'\"
\7;
9y Q%) = = f dipe——bwi—b, wg\ \J
— \\

we have from (8),

(10)  Bylx) =0{x)+ 43 & Q(“‘)’_‘{‘_’:;{q‘ Q@lq{al Y OTE: in

If, however, b, is not, sﬁmﬂ we may use in place of
2 (x)the function ¢(x) t{éﬁned as
¢(”)\\\1 dwev—(:—bl}wfqb,w’ﬂ
\ \)
by changi g*the [imits of integration from +# to .
Moreovq:r, we shall prove that

—

(1‘1)“ $(x) = (2x b)yze (e—=b)%/2%
O
To prove this, we write

+o0
o(x) =~1-f =2 cos fw{x— b)idw
2 ) o

i

~ " =52 gin [wlx—b)]dw.
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The second term vanishes hecause the sine is an odd
function. Since the cosine is an even function, we may
write '

o
(12) ¢(x) = lf £=b/2 cos [awl(x—b)]dw . A
"o D)
-
Differentiation with regard to x gives PAY
A
d¢(x) 1

g—teY2
i “_-[: w sin [ w(xl\bﬁdur
Integrate the right-hand membe: by‘parts and we have

u&ﬁlaeau.lﬁfﬁ.mbe}) f U?""’ “”/2 cos fw(x—b)jdw
(TN

TR
&
Then by inte@té&én,
(13) \ ,\‘:.’n., ¢(x) =Ae—{:,-—aulp/25.1 .
N7
@j A, let x=bin (12) and (13). This gives the well
kﬁo definite integral
_1 _b /2 . 1
A_-:r_£ i dw—a(z—-—_-wb)m.

Hence, we have
1 2
¢e)= QrbyE &

as given in (11).
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Therefore we may write in place of (10) the Type A
series

& d* '
(19 Bl=s@+a Te 4T e
where A o
1 D
¢(x) T e(2m)? gme=bIe QO
if 0'2=b2. (“"‘.

To study the degree of 3ppr0ximati9@‘~§ecured in
changing the limits of integration fromi\xr to + in
passing from Q(x) to ¢{(x), we obseljyg\ghat

. ‘“'\ ¢
669 ~0) = [ " dug 2 cos [(s—b)

*\-.f\.\;w“ d]il‘aulibral‘y,org,jn

and hence N
{¢(x)—9(x)]<1 %';i;ve""”’/2=i wg—w:a ah
AN - OF fox !
if Moo, | O

Hence, ~t}§e\d'jfference approaches zero very rapidly
with increhsing values of ¢ as may be seen by using the
valuesdf the last integral written corresponding to values
of X241, 2, 3,4, ... ., in a table of this probability
ititegral. A similar examination for the derivatives of &

«\2and ¢ will show that their differences similaxly approach

..\: *

%
\:

ZETO.
DEVELOPMENT OF TYPE B

To develop (2) in powers of p, we first write, since
ptg=1,

dlog 8(w)  dspe”
(15){

dw  1—p(1—e")
=£spgﬁ{1+p(l-—e"”)+p‘(1—-a‘“)’+ reen ]y
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a convergent series since
[p(1—e")| <1

Since #(0) =1, we obtain by intcgration

A
(16) log f(w)= R\,
_SP[ —8‘“—*—? 1_em)2+-£’ (1__,3:41)8_}_ P”:f‘
&.\\
Hence, writing \\:\
(7 e(w)—e-w—f‘“’>{1+32(1uem)2+&¥1—e“)“ ARRF P
\\
we have N\

www.dbraulibrary org.in W
B _mﬂ B __ia ‘.vs Sp'i Szpd

Now, from (1) and 173

(18) Bolx)= ixdwe‘”‘”““”’“—‘m?[l-i-Bz(l—~e“")2

,sw +Bs(1—e9y+ - - - ],
Let x w\
&
N 1 x i . x
) A = —rwi—gpl1—e¥) '
= f {7 otw 9.
‘\)wl‘hen let
M) =4 () —b (1) =5, f dwe=swi—s 1=
_1 dwe—u-nmi_spu-»e“']
T

—_—

= : (1-e")Q(w, x)dw .
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Then A= | (=m0, x)dw,
sy = [ (- O, 2w, Q
........ e O
Hence, we have :‘~}
(19)  Bolw) =¢(x)+Bab2Y(x)+ Bt () + -<~x\
To give other forms to \i\
_i i —m—sﬂ(l-‘s
¥l=) =75 . \
we may write www dbrauhbl ary.org.in
yb(x)——mf e"“‘"*‘”’f’“ dw
._f.__jf ”$[1+S? 8“"-]——2*62“"4" ] dw
= _s%f — i dw'{"SPf —w:(x-—l)dw
x \ " _{_522?'2 - gt . - J
\\\
¢ ( (’20) =e'”’[5in x1r+sp sin (3’_‘;1)"'4, .
<> ~ T x
) o sin (e=r)w, . ]
r—r
e, 1 + sp
=T T ET 2(x—2)
i
H'”’%?;:‘" ]
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(21)  =e —;l;‘rﬁm‘zﬁ—

if sp is replaced by A \ )

The foregoing analytical processes can be easily 1uci?1—
fied by the use of the properties of uniformly com’ﬂrwmt
series. When z approaches an integer 7, it 13, xg\c,ﬂ\ secn
from (20) that each term approaches zerg\except the
term NG

e7*? (sp) sin (x—-r):zr\
rl x—vr

wiww.dbr aullbr aly org. m N

and this term has as its llm}t the Poisson exponential

£ENSpY eV
\\ rt r!
The formula\(ﬁ) may therefore be regarded as defining
the Poissely’exponential e ™*/x! for non-integral values
of x5O
The development in series (19) is useful only when 2
'»{ssb small that sp is not large, say sp <10, s being a large
\"‘; “fumber. In this case, s is likely to be too small to allow
an expansion in a Type A series. Otherwise, the develop-
ment in Type A is better suited to represent the terms of
the binomial scries.
While the above demonstration is limited to the rep-
resentation of the law of probability given by terms of a
binomial, Wicksell has gone much further in the paper
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cited above in showing a line of development which sug

gests the use of the Gram-Charlier series for the represen-

tation of the law of probability given by terms of the

hypergeometric series, thus representing the law of prob-

ability which gives the basis of the Pearson system of

generalized frequency curves. Unfortunately, the demon\
stration of this extension would require somewhatt {miore

space devoted to formal analysis than seems d&sirable in

the present monograph. Hence we merely sta\a “the above

fact without a demonstration.

57. The values of the coefficients oKthe Type A series
obtained from the biorthogonal prepe?rty I in (14) we
measure x from the centroid ag {ahorigin and in units
equal to the standard deyw%dgm mg,}g]véq;p in place
of {14)

v.,

(22) F(x)=¢(x)+qa¢fs?(x)+mw(x)+ S
Y +aad™ )+ ...,

£ 3
.7

&

where
NG ol en
.\ " ¢{x}= o(2n) 2 € '
:"\."

:and $™(x) is the nth derivative of q&(x) with respect to .

The coefficients a.(n=0, 3, 4, ... .) in the Type A

series may be easily expressed in terms of moments of area

under the given frequency curve about the centroidal
ordinate because the functions ¢™(z) and the Hermite
polynomials H,(x) defined by the equation

L@ (x) = (— 1) Hn(x)d(x)
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form a biorthogonal system. Thus,

(23) f P (@) Ha(x)dx=0  (mtm),

0 T A
(24) and f ¢§;‘}Hm(x)dx=-£-17)n—' (m=mn) L

O
and this biorthogonal property affords a simple n\iqi;hod of
determining the coefficients in the Type A sefies.

To prove (23) and (24) we may write
D

\ N

o2 ‘w~

J L ¢(")(x)Hm(x)dx=(——1)”:It () Ho(2) Honl )

~ sy dbraulibrary orgin Mo

{25) &N

1 — & [ Zem B (dx
™ -0

s
$

Integration by part,a"gq\zes
€ \\.'

ol

[ st Holodoelr B

oo/

\"\} "o ) Ha() = “fw 670 (x) H () -
O e —x

ad
™%

Continuing until we have performed s -+ 1 successive inte-
ations by parts, we obtain, assuming n>m,

B

o
¢M () H,.(x)dx=
-

(..__ 1)m+lf qb(u—m—l] (x) Hm(m+1) (x}dx ,

o
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where H®tD{x) is the {m+1)th derivative of Ha(x).
Since Hn(x) is a polynomial of degree m in x, its (m+41)th
derivative vanishes and we have

(26) f ¥ W () HA(@)dx=0 N\
-

r’\t\’
N
for n>m, But from the form of (25), it is obYlous that
we could equally well prove (26) for m>n, ~F or =1, We
proceed as above with m successive m‘tegratlons We
then have, if we replace m by #,
= S _
[C om0 [ " se@ne @i
—oo W\»{\-ﬁf.d‘br hilsg-ar y org.in’

&8 o et

al
‘v

But the nth dcxl"'vatwe H™{z) of the polynomial H,{x)
is equal to@ Hence,

¢ f ¢ () Holw)du = (— 1)"n! ® o(x)dx
QI3

' ) (—0rnl ° oy, (1)
n/ =i e da=-——"—
\'\\ o(27) Wﬁm : ¢

T,
N

4 ..<~;
a\"

By multiplying both members of (22) by H,.(x) and
integrating under the assumption that the series is uni-
formly convergent, we have

f ® Plx) B2 dr=cn f ® 50 (2) Ha()do= (— 1) 2
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since by application of (26) all terms of the right-hand
member vanish except the one with the coefficient @n.
Hence,

o(—1) f_ ® F(x) Ha(x)dx

— o0 N
(28) @n= 7l ) oA\

"\

Moreover, to determine @, numerically for an obsérvéd
frequency distribution we replace F(x) in (2§}fby" the
observed frequency function f(x). oN

For purposes of numerical applicatignylet us now
change back from the standard deyia}ibn as a unit
to measuring x in the ordinary wunit of measurement
(feet, pounds, etc.) involved in theproblem, but still keep
the origitt 5Y fRESUNTS O BMY means that we replace
xin (28) by /0. Ifin thesgfl;hiis f(x) gives the observed
frequency distribution, we\may write in place of (28)

a"z."%—if&‘fwf(x) H.(x/0) dx/o

‘.:_‘_;(:_?_" ® @) Halx/o) dx .

WY n

(29)

Sin e:‘fi‘.;(x/ o) is a polynomial of degree » in x, the co-
efficients g, are thus given in terms of moments of area
'.\{Jﬁder the observed frequency curve. It is then faitly
“\“obvious that the determination of the moments of area
under the frequency curve plays an important part in the
Gram-Charlier system as well as in the Pearson system.

58. The values of the coefficients of Type A series
obtained from a least-squares criterion. It may be proved

by following J. P. Gram that the value of any coefficient

a, obtained in § 57 by the use of the biorthogonal property



COEFFICIENTS OF TYPE A SERIES 169

is the same as that obtained by finding the best approxi-
mation to f{x), in the sense of a certain least-squares
criterion, by the first m terms of the serfes (m=n). To
prove this statement, we may proceed as follows: Con-
sider the series

Fo)=ap(@)+as? @+ - +os™@) (D
for the representation of an observed frequency £m§gt10n
f(x). The least-squares criterion® that

L ¥

/N

(30) y= f -t =P 3

@ A

&

shall be a minimum leads to valids of cocfficients given
in §19. WWW dbraulibrary.org.in

To prove this, we squart:‘the binomial 7(x) —F(x} and
differentiate partially thh regard to the parameters

o, gy o« v« Oy Th{l{‘: gives
ay 8¢ \ .}f(x)F(x)dx 2—d
dan zéfa,, > T elwy 6%[ [F@)] s

=2(— lf‘*’f flx) Hy (x)dx—I—Za,, [H (x}] ¢(x)dx

S}. Q“'
N 1 5 7o o W]
\w\ f " Fra- f s (S ee P ds

=f @I @P @
- +ak [Hn(x) Pt (x)dx

the product terms vanishing because of (26).
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Making 0V /da.=0, we have

60207 [ (a) Baliot 220 [t steaz=o.

But
(32) f " A (DP el dr=(—1)" f K ¢‘"’(x)H»(sc)dx=?:§ -4
From (31) and (32), we have “\‘
- N
_ g(_ 1)» L] \ ¥
w207 1 2R

which is.identicalimith, the valuggbtained by the use of
the biorthogonal property. .~

59. The coefficients of.a.f:;I‘ype B series. In consider-
ing the determination ofji’ﬁé coefficients ¢y, ¢1, €2, + + + + s
of the Type B series,swe shall restrict our treatment to a
distribution of equally distant ordinates at non-negative
integral values'ofr; and shall for simplicity consider the
representatigmby the first three terms of the series. That
is, we wiite J
07 F@ =a(x) oty (x) +ad(x) ,

$
N

«3 —ANF
O "p(x)=8x!

) ) ' :
for =0, 1, 2,....Let f(x) give the ordinates of the
observed distribution of relative frequencies, so that
S =1.

Equating sums of ordinates and first and second
moments u fand g of ordinates of the theoretical and
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observed distributions, we may now determine the co-
eificients approximately from the equations: :

(2 [eob (@) Fat (@) +add(@)]=2 fx)=1 A
(33) 4 Lalep (O +add(@)+adP@)) =2 af () =un :\:\~
| ottt (e) Fadp (@) +otd ()] = 2a ) =um O
N\

Before solving these equations for &, ¢, ,ancl ¢, We
ruy simplify by the substitution of certain va}ues which
arc close approximations when we are deahng with large
aumbers. Thus, we recall that we ha\{\&fenved in § 14,
Chapter IT, the following approxim’at' ns:

ZW@)sllj_rguhbl ary.org.in

EmP Z,:n,@(x) M,
p*tzxw (x) =M+,
\

We may n ﬁ\ezrsﬂy ohtain the following further ap-
Pproximate vaIues
Tapla) —‘Zw(x) —P(x—1)]=1-1=0,
EA@:) =2 @) -2 -+ @E-2]=
Ekaw(x) Tl () v (& —1)]

o) =2 () — 2 (x— P lx—1)—¢(x—1},

Similarly, it is easily shown that
2 oab? (=0,
SA¢x)=—2—1,
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and
Soatan () =2 .
Substituting these values in equations {33), we obtain. &
=1, Ao—a=4u, L
()+h2)60‘(2h+1)61+262=#; .  { el

If we take h=pj, we have the coefficient f1=Q
Then expressing the second moment wivin terms of
the second moment y, about the meap@ the relation
'\(.
}12“'1‘)\2 % \/

s.'

we haWw.dbraulibral y-org.ingy
I\ g
AN 2=t a=ba—N) .

$

Hence, we write

F(Qs\ub 0+ 3N AN ()

when A is takén equal to the first moment pf, which is
the arithinetic mean of the values of the given variates.

Izt\‘i'\,\fa.lrly ohvious that this application of moments
tat\ﬁ;ndjng values of the coefficients can be extended to
m}:re terms if they were needed in dealing with actual
data.
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